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Introduction

Distributed Constraint Optimization Problems (DCOPs) are a
powerful framework to model cooperative Multi-agent Systems.
This framework has been applied to various areas of multi-agent
coordination, such as:

Distributed meeting scheduling.

Sensor networks.

Smart grids.

and many more.
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Definition of a DCOP

A DCOP is defined as a tuple 〈A,X ,D,F , α〉, where,

A = {a1, a2, ..., an} is a finite set of agents.

X = {x1, x2, ..., xm} is a finite set of discrete decision variables.

D = {D1,D2, ...,Dm} is a set of finite discrete domains where
each Di corresponds to the domain of variable xi .

F = {f1, f2, ..., fk} is a finite set of cost functions, with each
fi :
∏

xj∈x i Dj →R defined over a set of variables x i ⊆ X .

α : X → A is a mapping function, which associates each
variable xi ∈ X to an agent ai ∈ A.

Objective of a DCOP:

X ∗ = argmin
X

k∑
i=1

fi (x
i ) (1)
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Continuous DCOPs (C-DCOPs)

The traditional DCOP model is based on an assumption; that is,
the variables are discrete decision variables. Nevertheless, a
number of applications can be best modeled with continuous
valued variables, such as:

Target tracking sensor orientation.

Cooperative air and ground surveillance.

Network coverage using low duty-cycled sensors.

and many more.
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Definition of a C-DCOP

A Continuous DCOP (C-DCOP) can also be described by a tuple
〈A,X ,D,F , α〉, where A, F, and α are exactly the same as those in
a DCOP. X and D are defined as follows:

X = {x1, x2, ..., xm} is a finite set of continuous decision
variables.

D = {D1,D2, ...,Dm} is a set of continuous domains. Each
variable xi can choose any value from a range,
Di = [LBi ,UBi ].
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Example of a C-DCOP

x0x3

x1

x2

(a) Constraint Graph

f (x0, x1) = x20 − 2x0x1 + 2x21
f (x0, x2) = x0x2 + 3x22
f (x0, x3) = x0x3 + x23

f (x1, x2) = x21 − x1x2 + 2x22

∀xi ∈ X : Di = [−20, 20]

(b) Cost Functions
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Exact & Non-exact C-DCOP Algorithms

Sarker, Choudhury, Khan Contact: Amit Sarker (amitcsedu99@gmail.com) 7 / 20



Introduction
The C-CoCoA Algorithm

Conclusions & Future Work

Distributed Constraint Optimization Problems (DCOPs)
Continuous DCOPs (C-DCOPs)
C-DCOP Algorithms

Non-exact C-DCOP Algorithms
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Overview

C-CoCoA is a non-iterative algorithm that is able to find
high-quality solutions with a smaller communication overhead than
the existing state-of-the-art C-DCOP solvers.

Agents’ states used in C-CoCoA:

IDLE : Initial state for each agent.
ACTIVE : The agent is now active and working to find an
assignment for its variable.
HOLD: Variable assignment for the agent is delayed and the
agent waits for more information from neighbors.
DONE : The agent has completed the assignment for its
variable.
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Overview

Message types used in C-CoCoA:

InquiryMessage: Sent by an agent to its neighbors at the
start of the algorithm.
CostMessage: Neighbors’ reply against the InquiryMessage.
UpdateStateMessage: An agent updates its state.
SetValueMessage: An agent assigns a value to its variable.
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The Algorithm

a1

a0

a2

a3

(a) InquiryMessage
from a0

a0a3

a1

a2

(b) CostMessage to a0

a0a3

a1

a2

(c) InquiryMessage
from a1

Discretize each continuous domain into d points.

The algorithm starts by randomly activating an agent ai .

ai sends InquiryMessage to all the neighbors aj ∈ Ni .
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The Algorithm

Each neighbor aj calculates the cost by using the following
equation:

ζj ,k = min
xj,l∈Dj

∑
C∈Fj

C (x̃j ∩ xi ,k ∩ xj ,l) (2)

Agent aj then sends the cost map to the inquiring agent ai .

ai then finds the value of its variable by using the following
equation:

δ = min

|Ni |∑
j=1

ζj ,k ; ρ = {k :

|Ni |∑
j=1

ζj ,k = δ} (3)
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This assignment is near-optimal within the discretized domain.
In order to find the best solution within the actual continuous
domain, we use a non-linear optimization technique.
For employing the gradient-based non-linear optimization,
agent ai calculates the local objective function F ai

Ni
by using

the following equation:

F ai
Ni

=
∑
aj∈Ni

f (ai , aj) (4)

Specifically, the agent ai minimizes the local objective
function F ai

Ni
and updates the value vx of each variable

x ∈ xaiNi
according to the following equation:

vx(t) = vx(t − 1)− α
∂F ai
Ni

∂xaiNi

∣∣∣∣vx
argminxi

F
ai
Ni

(x
ai
Ni

)

(5)
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The Algorithm

The agent continues this update process until it converges or
a maximum number of iterations is reached. After
termination, the current value of vx is actually the
approximate optimal assignment for the variable xi .

The agent ai then updates its state to DONE and
communicates to its neighbors aj ∈ Ni in a
SetValueMessage. By receiving this message, the neighbors
update their CPA with the value of xi and trigger the
algorithm for them.

Note that each agent can only assign its value once and when
assigned it cannot change its value. Thus C-CoCoA is a
non-iterative approach.

Sarker, Choudhury, Khan Contact: Amit Sarker (amitcsedu99@gmail.com) 14 / 20



Introduction
The C-CoCoA Algorithm

Conclusions & Future Work

Proposed Method
Theoretical Analysis
Experimental Evaluation

Theoretical Analysis

In a binary constraint graph G = (N,E ), in the worst case:

The total number of messages sent or received by an agent ai
is 5|N|+ d |N|.
The total message size for an agent ai is O(2|N|2 + d |N|).

The overall computational complexity is O(|N|(d2 + b)).
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Random C-DCOPs
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(a) Dense Graphs
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(b) Sparse Graphs

Random C-DCOPs with 50 agents and graph density 0.2 to
0.6.

C-CoCoA outperforms state-of-the-art non-exact algorithms
by 7.97%− 24.58% on dense random C-DCOPs,
18.75%− 25.43% on sparse random C-DCOPs.
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Random C-DCOPs
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(a) Scale-free Graphs
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(b) Random Tree

For scale-free network, we use 100 agents.

C-CoCoA outperforms state-of-the-art non-exact algorithms
by 2.63%− 5.94% on scale-free graphs, 11.31%− 21.42% on
random trees.
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Random Graphs

Table: Solution quality of C-CoCoA, PFD, HCMS, and C-DSA on
random graphs with varying number of agents.

C-CoCoA PFD HCMS C-DSA

|A| = 30
p = 0.2 -554,339 -469,093 -423,383 -493,730
p = 0.6 -1,251,118 -1,042,611 -1,055,878 -1,096,852

|A| = 50
p = 0.2 -1,311,988 -1,030,328 -974,416 -1,118,344
p = 0.6 -3,086,005 -2,623,534 -2,730,943 -2,334,385

|A| = 70
p = 0.2 -2,253,114 -1,858,646 -2,049,757 -1,636,508
p = 0.6 -5,486,958 -4,494,102 -5,060,671 —
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Conclusions & Future Work

The classical DCOP model deals with discrete variables. But
this assumption of the variables being discrete is not
applicable to many real-world problems.

In this paper, we propose a local search based algorithm,
C-CoCoA, that is able to solve DCOPs with continuous
variable.

Basically, we show that a simple extension of a local search
algorithm can find better solution in significantly less time
than the complex inference based algorithms.

In future, we would like to further investigate the potential of
C-CoCoA on various C-DCOP applications. We would also
like to explore the ways to extend C-CoCoA to solve
multi-objective and asymmetric C-DCOPs.
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Thank you for watching the presentation.
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