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Machine learning models are prone to memorizing sensitive data, making
them vulnerable to membership inference attacks in which an adversary
aims to guess if an input sample was used to train the model. Adversaries
can reach users’ sensitive information using membership inference attacks.
As an example, Imagine if an adversary has access to a machine learning
application, which is trained by patient data of a hospital. If he could check
whether a user record is used in training data, he can understand that the
user was once a patient in that hospital. To test the effectiveness of NN-based
defense models, we will benchmark membership inference privacy risk by
using non-neural network-based inference attacks on NN-based defense
mechanisms. Furthermore, we will assess the effectiveness of a new privacy
risk score that uses the training data’s sampling probability to measure the
risk of an attack. Our work is based on the Usenix 21 paper - “Systematic
Evaluation of Privacy Risks of Machine Learning Models [12].”
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1 INTRODUCTION
According to previous research, it is shown that machine learning
models can memorize some information from their training data. In
some cases, it may not seem a critical problem but in the case that
the model is trained using users’ sensitive information, it would
be a significant privacy risk [2, 3]. In this project, we focused on
membership inference attacks where an adversary tries to figure
out whether a data sample was used to train a model or not [10, 14].
Thus, it can disclose users’ sensitive information. For example, if
adversaries figure out that a user’s information is being used to
train a machine learning model for a healthcare application, they
can realize that users have been patient once. Since membership
inference attacks can reveal the presence of user information in the
training data using the target model, they can be considered as a
good tool to evaluate the quality of privacy implementations [4].
Membership inference attacks can be divided into two main cate-
gories including black-box attacks and white-box attacks which will
be explained in the next section. To reduce the privacy risk, several
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Fig. 1. Improving existing attacks with class-dependent thresholds.

defenses against membership inference attacks have been proposed.
In [1] membership inference attack is considered in the training
phase. They tried to train the target model with high accuracy
for prediction and low accuracy for membership inference attacks.
Memguard [5] is another defense method that does not require re-
training the model. We will review how previous works evaluated
the membership inference privacy risk of machine learning models
and explain two limitations in the previous works: first, many of the
previous works proposed defense models using custom-trained NN-
based classifiers to perform membership inference attacks. Second,
the evaluation phase in previous works just focused on aggregate
concepts of privacy risks faced by all data samples. In this project,
our main contributions are as follows:

• We propose a suit of metric-based attacks and use them to
supplement existing neural network (NN) based MI attacks.
We also evaluate multiple attack strategies and report the
worst-case privacy risks.

• We review two defense models [5, 7]that are mentioned pre-
viously and demonstrate that they are not so efficient.

• We define a new metric called privacy risk score in order to
evaluate the privacy risks of machine learning models in a
fine-grained manner.

• We apply fine-grained analysis in conjunction with existing
aggregated analysis for a thorough evaluation of privacy risks.
Our implementation is publicly available online1.

2 BACKGROUND
As mentioned previously, in membership inference attacks, adver-
saries try to figure out if a given data was used to train the target
model or not, thus it would be a privacy risk for the user whose
information is part of the training set of the target model. In this sec-
tion, we express two categories of membership inference attacks and
some previous works for each group. In the next section, we will talk
about two state-of-the-art defense methods including adversarial
regularization [7] and MemGuard [5].

1https://github.com/mashrur29/MIA-Evaluation
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2.1 Black Box Membership Inference Attacks
In black box attacks, Adversary only observes the prediction outputs
of the target model. In [11] Shokri et a. Investigated black box
membership attacks against the machine learning models. Salem
et al. [9] showed that even if only a single shadow model existed,
membership inference attacks can perform successfully. In addition,
there are some non-NN membership inference attacks that work
with custom metrics on the predictions of the target mode. Leino [6]
proposed a model using prediction correctness as a sign of being a
member or not.

2.2 White Box Membership Inference Attacks
In white box attacks, the adversary has full access to the target ma-
chine learning model and knows the model architecture and model
parameters. In [8] Nasr et al. reviewed the white box membership
inference attacks. They claimed that combining the predictions of
the target model together with its intermediate computations can
improve the accuracy compared to black-box attacks. In this project,
we demonstrate that the gap between the accuracy of black box
membership inference attacks andwhite boxmembership inferences
attacks is less than what claimed in the [8]

3 EVALUATING MEMBERSHIP INFERENCE ATTACK
The existing neural network-based membership attacks train classi-
fiers to distinguish between members and non-members. However,
the accuracy of such attack models largely depends on the accuracy
of the classifier. Therefore, we use metrics in this work to compute
the privacy risk of Machine Learning (ML) models. These metrics
depend on class-dependent thresholds set using shadow training.

3.1 Defense Methods
This work uses two popular neural network-based defense methods:
Adversarial Regularization [7] and MemGuard [5].

3.1.1 Adversarial Regularization. In adversarial regularization, an
adversary is trained with the target model, which tends to maximize
the accuracy of the membership inference attacks. On the other
hand, the target model uses the output of the adversary to regularize
its loss to minimize the accuracy of the attack model. So, we get a
min-max objective, where an adversary is trained with the target
model.

3.1.2 MemGuard. In MemGuard, the training process remains un-
changed. Instead, the output of the target model is obfuscated with
predefined noise to confuse the attack model. The objective is to
reduce the distance between the actual target model prediction and
the noisy prediction so that the final predicted class remains the
same.

3.2 Trained Models
This work uses three network architectures with Tanh and ReLU
activations and RNN unit. We use the Texas-100 and Purchase 100
datasets to train the models. We trained each model for 20 epochs
with a batch size of 128. We used a 3 : 1 split for the train and test
set. The hyperparameters were tuned using grid search. The models
were trained on a single 1050ti over a span of 1 week. Figure 2,

shows the results of train and test accuracy of our trained models.
We obtained a reasonable test accuracy for each model, except for
the RNN unit with MemGuard defense. We speculate that this is
caused by insufficient hyperparameter tuning due to resource con-
straints. Following the work done in [12], we used class-dependant
thresholds to infer membership (see Figure 1).

3.3 Evaluating SOTA Defense with NN-based Adversarial
Attacks

We performed adversarial attacks on the model during the training
process to evaluate the privacy leakage of the trained models (see
Figure 3). On average, the privacy leakage of the models was close
to random guessing. Furthermore, the models trained on the texas
dataset had a relatively greater privacy leakage.

3.4 Metric-based Membership Inference Attacks
In this work, we supplement the output of neural network-based at-
tacks with metric-based attacks. These metrics are easy to compute
and are learned from the shadow models, where the neural network
is trained to replicate the behavior of the target model. Follow-
ing [12], we used prediction correctness, confidence, entropy, and
modified entropy. Prediction correctness computes the correctness
of the membership inference and prediction confidence uses the con-
fidence of the probability with which the model infers membership.
Prediction entropy computes the prediction entropy distribution,
and the modified entropy incorporates the ground truth label.

3.5 Evaluating SOTA Defense with Metric-based Attacks
Table 1 shows the results from our metric-based attacks. The results
show that the metric-based attacks have comparable accuracies to
the NN-based attacks. Moreover, the metric-based attacks show a
relatively greater privacy leakage than the NN-based attacks. In
particular, the Purchase-100 with the defense has a privacy leakage
of 57% confidence, and the Texas 100 with a privacy leakage of
68% confidence. This suggests the relevance of metric-based MIA
attacks in determining privacy leakage as an alternative to NN-based
attacks.

4 PRIVACY RISK SCORE

Fig. 4. Fine-grained privacy Analysis
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Table 1. Benchmark of Membership Inference Attacks on neural network based defense models.

dataset using defense? train acc test acc correctness confidence entropy modified entropy
Purchase 100 no 89.7 73.5 0.58 0.59 0.49 0.53
Purchase 100 yes 88.4 76.4 0.57 0.57 0.49 0.51
Texas 100 no 76.9 48.7 0.64 0.68 0.53 0.57
Texas 100 yes 76.1 53.6 0.61 0.64 0.51 0.54

Privacy analysis is not a new concept, and in [5, 7, 8, 10, 13] these
works, the authors concentrate on an aggregate assessment of pri-
vacy threats by presenting overall attack accuracy or a precision-
recall pair averaged across all samples. However, for the hetero-
geneity of the target ML model’s sample, a fine-grained analysis of
the privacy risk model is necessary. The privacy risk of a training

member originates from the distinguishability of its model predic-
tion behavior with non-members in membership inference attacks.
Therefore, the privacy risk score of an input sample z = (x, y) for a
Machine Learning model F is defined as the posterior probability
that it is from the training dataset 𝐷𝑡𝑟 after observing the target
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model’s behavior over that sample denoted as O(F, z). Figure 4 de-
scribes the process to calculate the privacy risk score.

𝑟 (z) = 𝑃 (z ∈ 𝐷𝑡𝑟 |𝑂 (𝐹, z)) (1)

We can apply Bayes’ rule and get the following equation:

𝑟 (z) = 𝑃 (z ∈ 𝐷𝑡𝑟 ).𝑃 (𝑂 (𝐹, z) |z ∈ 𝐷𝑡𝑟 )
𝑃 (𝑂 (𝐹, z)) (2)

and,

𝑃 (𝑂 (𝐹, z)) = 𝑃 (z ∈ 𝐷𝑡𝑟 ) .𝑃 (𝑂 (𝐹, z) |z ∈ 𝐷𝑡𝑟 )+𝑃 (z ∈ 𝐷𝑡𝑒 ) .𝑃 (𝑂 (𝐹, z) |z ∈ 𝐷𝑡𝑒 )
(3)

So, we can further get:

𝑟 (z) = 𝑃 (z ∈ 𝐷𝑡𝑟 ).𝑃 (𝑂 (𝐹, z) |z ∈ 𝐷𝑡𝑟 )
𝑃 (z ∈ 𝐷𝑡𝑟 ).𝑃 (𝑂 (𝐹, z) |z ∈ 𝐷𝑡𝑟 ) + 𝑃 (z ∈ 𝐷𝑡𝑒 ) .𝑃 (𝑂 (𝐹, z) |z ∈ 𝐷𝑡𝑒 )

(4)

The authors of this paper assume that their model only needs
black-box access to the target machine-learning model. In a black-
box membership inference attack, O(F, z) = F(x). So we can write:

𝑟 (z) = 𝑃 (z ∈ 𝐷𝑡𝑟 ) .𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 )
𝑃 (z ∈ 𝐷𝑡𝑟 ) .𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 ) + 𝑃 (z ∈ 𝐷𝑡𝑒 ) .𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑒 )

(5)
We can see from Equation 5, the risk score depends on the 𝑃 (z ∈

𝐷𝑡𝑟 ), 𝑃 (z ∈ 𝐷𝑡𝑒 ), and 𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 ), 𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑒 ). For the
prior probabilities, the authors assume that the samples are either
from the training set or the test set. So the probability is equal which
is 0.5 probability. So, with this assumption we can write:

𝑟 (z) = 𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 )
𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 ) + 𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑒 )

(6)

In this paper, the shadow training concept is used to find the con-
ditional probability distribution 𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 ) and 𝑃 (𝐹 (x) |z ∈
𝐷𝑡𝑒 ). This shadow training is performed using the following steps:

• In the first step, they train a shadow model to replicate the
behavior of the target machine-learning model.

• They acquire the prediction outputs of the shadow model on
shadow training and shadow test data in the second step.

• Finally, empirical evaluation of conditional distributions on
shadow training and shadow test data are computed.

• Also the authors compute the distributions of model pre-
diction across training and test data 𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 ) and
𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑒 ) in a class-dependent way.

So, for calculating 𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 ), Equation 7 is used.

𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 ) =



𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 ), when 𝑦 = 𝑦0
𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 ), when 𝑦 = 𝑦1
.

.

.

𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 ), when 𝑦 = 𝑦𝑛

(7)

and 𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑒 ) is calculated using the Equation 8.

𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑒 ) =



𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑒 ), when 𝑦 = 𝑦0
𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑒 ), when 𝑦 = 𝑦1
.

.

.

𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑒 ), when 𝑦 = 𝑦𝑛

(8)

Also, the authors demonstrate that by merely employing one-
dimension prediction metrics like confidence and modified entropy,
their suggested benchmark attacks achieve equivalent or even greater
accuracy than NN-based attacks that use the entire prediction vector
as features. As a result, they recommend that the multi-dimension
distribution in Equation 8 be further approximated with the distri-
bution of modified prediction entropy because employing mod-
ified entropy frequently results in the greatest attack accuracy
across all benchmark assaults. Most of the time, both the modified
entropy-based assault and the confidence-based attack provide the
best attack performance. However, for undefended Location30 and
Texas100 classifiers, the updated entropy-based approach delivers
much greater attack accuracy.

𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑟 ) =



𝑃 (𝑀𝑒𝑛𝑡𝑟 (𝐹 (x), 𝑦) |z ∈ 𝐷𝑡𝑟 , 𝑦 = 𝑦0), when 𝑦 = 𝑦0
𝑃 (𝑀𝑒𝑛𝑡𝑟 (𝐹 (x), 𝑦) |z ∈ 𝐷𝑡𝑟 , 𝑦 = 𝑦1), when 𝑦 = 𝑦1
.

.

.

𝑃 (𝑀𝑒𝑛𝑡𝑟 (𝐹 (x), 𝑦) |z ∈ 𝐷𝑡𝑟 , 𝑦 = 𝑦𝑛), when 𝑦 = 𝑦𝑛
(9)

and, we can write Equation 7 as:

𝑃 (𝐹 (x) |z ∈ 𝐷𝑡𝑒 ) =



𝑃 (𝑀𝑒𝑛𝑡𝑟 (𝐹 (x), 𝑦) |z ∈ 𝐷𝑡𝑒 , 𝑦 = 𝑦0), when 𝑦 = 𝑦0
𝑃 (𝑀𝑒𝑛𝑡𝑟 (𝐹 (x), 𝑦) |z ∈ 𝐷𝑡𝑒 , 𝑦 = 𝑦1), when 𝑦 = 𝑦1
.

.

.

𝑃 (𝑀𝑒𝑛𝑡𝑟 (𝐹 (x), 𝑦) |z ∈ 𝐷𝑡𝑒 , 𝑦 = 𝑦𝑛), when 𝑦 = 𝑦𝑛
(10)

4.1 Validation of Privacy Risk Score
We validate the effectiveness of the privacy risk score here before
releasing the comprehensive data. For the target machine learning
model, we first compute the privacy risk scores using the procedure
in Section 4 for all training and test samples. The complete range
of privacy risk scores is then divided into numerous bins, and the
number of training points (𝑛𝑡𝑟 ) and test points (𝑛𝑡𝑒 ) in each bin are
counted. The proportion of training points ( 𝑛𝑡𝑟

𝑛𝑡𝑟+𝑛𝑡𝑒 ) in each bin is
then computed, indicating the true probability of a sample being a
member. If the privacy risk score actually correlates to the chance
that a sample comes from the training set of a target model, we may
anticipate the actual values of privacy risk scores and the proportion
of training points in each bin to closely track each other. We show
the distribution of the training sample’s privacy risk score without
defense in Figure 5 and with AdvReg in Figure 6. We then compare
the privacy risk score and attack classifier’s output with the real

, Vol. 1, No. 1, Article . Publication date: May 2024.



The Effectiveness of NN-based Defense Models Against Membership Inference Attacks • 5

Table 2. Benchmark of Membership Inference Attacks by varying the threshold values on privacy risk ratings, the (precision, recall) pair of membership
inference attacks is presented for each threshold value.

Threshold values on privacy risk score 1.0 0.9 0.8 0.7 0.6 0.5
Attack Precision 88.2% 84.5% 82.6% 77.0% 71.3% 66.0%
Attack Recall 1.4% 7.6% 18.7% 43.7% 70.5% 99.9%

Table 3. Evaluation of the privacy risk score on different classifiers with and without defense mechanisms.

MemGuard AdvReg Without Defense
Tanh ReLU RNN Tanh ReLU RNN Tanh ReLU RNN

Purchase100 0.547 0.504 0.519 0.501 0.502 0.509 0.513 0.510 0.541
Texas100 0.536 0.532 0.565 0.513 0.502 0.537 0.514 0.512 0.535

privacy risk score (without defense)
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Fig. 5. Distribution of training sample’s privacy risk score (without defense)

privacy risk score (with defense)
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Fig. 6. Distribution of training sample’s privacy risk score (with AdvReg)

probability of being a member. Figure 7 shows the comparison with
the ideal case scenario. We have used the model without defense and
the model with AdvReg. The red dotted line in Figure 7 represents

privacy risk score
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Fig. 7. Comparison of the privacy risk score with the real probability of
being a member

the ideal case scenario. From this figure, we can see that privacy risk
score closely aligns with the actual probability of being a member. 2

4.2 Usage of Privacy Risk Score
From the findings in Section 4, the authors show that a data point’s
privacy risk score reflects its likelihood of being a member. Instead
of chasing high average attack accuracy, now the adversary may
discover which samples have high privacy risks and launch attacks
with high confidence: a sample is inferred as a member if and only
if its privacy risk score is above a particular probability threshold.
We present the results with precision-recall values in Table 2. From
the result, we can see that the Texas100 classifier has severe privacy
risks. For example, 99.9% training members can be inferred correctly
with a precision of 66.0%, and 7.6% training members can be inferred
correctly with a precision of 84.5%.

2All the experiments in this report are done by us. We have not used any graphs or
results from the actual paper
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4.3 Evaluation of the Privacy Risk Score
We then evaluate the privacy risk score metric without defense and
also by using MemGuard and AdvReg. We use the Purchase100
and Texas100 datasets for this evaluation. We report our results in
Table 3 for Tanh, ReLU activation functions, and RNN. We can see
that the privacy risk score is approximately close to 0.5. But for
some cases, it is much higher than 0.5.

5 CONCLUSION
In this project, we have shown that measuring the privacy risks of
membership inference privacy risk using NN-based attacks solely
is not a reliable approach. We tried to benchmark the privacy risks
of machine learning models using a suite of metric-based attacks
including modified existing models and a newly proposed method.
By using these benchmark attacks, two concepts are shown respec-
tively:

• The defense approach proposed by Nasr et al. in [7] can only
decrease privacy risks to a limited degree and it is not efficient
enough.

• we showed that the performance of MemGuard which is
proposed in [5] by Jia et al. is degraded with adaptive attacks

In addition, we presented a new metric called privacy risk score to
evaluate and analyze individual samples’ privacy risks. We showed
that using a privacy risk score is a trustable approach to estimating
the true likelihood of an individual sample being in the training set of
a model. We also investigated the correlation between privacy risks
and model properties. In conclusion, in this project, we emphasized
on the importance of evaluation of privacy risks in machine learning
models
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