
Exploring the New Horizon of Sequence Modeling: Unveiling the
Potentials and Challenges of Mamba

Saaduddin Mahmud
smahmud@umass.edu

Md Ashraful Islam
mdashrafuli@umass.edu

Sabrina Zaman Ishita
sishita@umass.edu

Amit Sarker
asarker@umass.edu

Sarmistha Sarna Gomasta
sgomasta@umass.edu

1 Problem statement

Our research project proposes a comprehensive
evaluation across a spectrum of NLP and sequence
modeling benchmarks of the newly proposed se-
quence model called Mamba (Gu and Dao, 2023),
a recent addition to the generalized state space
models (GSSM) (Gu et al., 2021). Unlike its pre-
decessors, Mamba has already distinguished it-
self within the medium-scale parameter sphere (3-
6 billion parameters), showcasing superior per-
formance over the traditional Transformer models
(Vaswani et al., 2017) in various data modalities
such as language, audio, and genomics. This ex-
ceptional performance, coupled with a nearly 5x
increase in inference speed, positions Mamba as
a potentially transformative approach in the realm
of sequence modeling.

Despite its promising start, the comprehen-
sive capabilities of Mamba remain underexplored,
particularly in comparison to the broad spec-
trum of tasks and challenges customarily tack-
led by its transformer and LSTM (Hochreiter and
Schmidhuber, 1997) counterparts. Critical dimen-
sions such as model interpretability, fairness, and
bias—essential for the responsible development
and deployment of AI technologies—have yet to
be thoroughly examined for Mamba models. To
bridge these gaps, our project will focus on the fol-
lowing key contributions:

1. Extensive Evaluation and Analysis of Ca-
pabilities: Systematically evaluate Mamba
against state-of-the-art transformer models
like LLAMA 2 (Touvron et al., 2023) and
Mixtral (Jiang et al., 2024), as well as LSTM
models, across a comprehensive range of
NLP and sequence modeling benchmarks. In
particular, we want to explore four different
areas:

• Arithmetic Sequence Generalization
(Jelassi et al., 2023).

• CoT augmented Fine-Tuning.
• Temporal Structured Data.
• In-context Learning.

2. Exploration of Model Dimensions: Assess
Mamba’s performance across crucial dimen-
sions such as fairness, and bias through quan-
titative analyses.

By systematically addressing these areas, our
project aspires to provide the research community
with a thorough understanding of Mamba’s poten-
tial and practical applications. Our goal is to illu-
minate whether the development of Mamba mod-
els represents a worthwhile investment for future
research endeavors in the rapidly evolving field of
AI and sequence modeling.

2 What you proposed vs. what you
accomplished

Overall, we successfully met our primary objec-
tives of evaluating Mamba’s capabilities and an-
alyzing its performance on various benchmarks.
However, due to constraints in computational re-
sources, we could not fully explore architectural
innovations within the Mamba framework. This
remains an area for future exploration. Notably,
the current version of the project incurred over
$200 in computational resource expenses (Google
Colab, Vast.ai).

3 Paper Structure

The rest of the paper is structured as follows — We
begin with a concise literature review of the eval-
uation areas we are focusing on. Following that,
Sections 5 to 11 each provide a complete analysis
and comparison in one of the areas more precisely:

• Section 5: Investigating Arithmetic Capabil-
ity of Language Models

• Section 6: Chain-of-Thought Fine-tuning for
Arithmetic

• Section 7: Evaluating In-Context Learning
(ICL) Performance of LMs on Arithmetic
and Sentiment Analysis Tasks

• Section 8: Investigating Machine Translation
of Language Models

• Section 9: Mamba-Based Model Updater for
M-TGNNs

• Section 10: Bias and Fairness Analysis

• Section 11: Evaluating Fairness of Pre-
trained Mamba Models using Shapley Attri-
bution

Finally, we conclude with a discussion, summa-
rizing our contributions.

4 Literature Review

In this section, we commence with an overview of
the contemporary landscape of sequence model-
ing, focusing on Generalized State Space Models
(GSSMs) and Mamba. Subsequently, we will in-
troduce the various domains and benchmarks that
will be utilized for evaluation.

4.1 Sequence Models

The journey of sequence modeling has transi-
tioned from the simplicity of recurrent layers
through the complexity of Transformers, to the
efficiency of state space models, culminating in
the innovative Mamba model. Initially, Recurrent
Neural Networks (RNNs) (Pineda, 1987) and their
variants like LSTMs (Hochreiter and Schmidhu-
ber, 1997) dominated the scene with their ability
to process sequences by maintaining a hidden state
across steps. Despite their early promise, they
struggled with long-range dependencies and com-
putational scalability. The Transformer(Vaswani
et al., 2017) model revolutionized this landscape
with its self-attention mechanism, dynamically fo-
cusing on different parts of a sequence to cap-
ture complex dependencies, albeit at the cost of
quadratic computational complexity for long se-
quences.

To surmount the limitations of Transformers in
handling very long sequences, structured state-
space sequence models (SSMs)(Gu et al., 2021)
were introduced, blending the strengths of RNNs,
CNNs (LeCun et al., 1995), and classical state-
space models for efficient sequence processing.
Enter the Mamba(Gu and Dao, 2023) model,
which refines this approach with selective SSMs,
allowing for content-based selective information
propagation or omission. Mamba stands out for its
hardware-aware computation, achieving unparal-
leled efficiency and scalability across diverse data
modalities like language, audio, and genomics.
This can beginning of a potentially significant leap
in the evolution of sequence modeling. However,
more evaluation is required as the development
is fairly new and there are several areas where
Mamba has not been compared with Transformers
and LSTMs.

4.2 Fine-Tuning
LoRA, proposed by Hu et al. (Hu et al., 2021),
is an efficient technique for fine-tuning large lan-
guage models on specific tasks by updating only
a small subset of the model’s parameters. This
reduces computational costs while maintaining
high performance, making it feasible to adapt pre-
trained models to specialized tasks such as arith-
metic problem-solving. We particularly chose this
due to computational resource limitations and full
SFT was not possible.

4.3 Arithmetic Capability of Language
Models

The investigation of arithmetic capabilities in
large language models (LLMs) has become an
important area of research, particularly for under-
standing the models’ ability to handle numerical
and logical reasoning tasks. One key focus is the
generalization of arithmetic skills to inputs that
vary in length and complexity, which is crucial for
real-world applications.

Recent work by Jelassi et al. (Jelassi et al.,
2023) explores the challenges that transformers
face in learning basic integer arithmetic and
generalizing to longer sequences than those seen
during training. Their study highlights the use
of relative position embeddings (RPE) to enable
length generalization in simple tasks such as addi-
tion. The authors found that transformers trained
on 5-digit numbers could perform 15-digit sums

when RPE was used. However, this approach
failed for multiplication tasks. To address this,
they proposed a method called train set priming,
where a few long sequences are added to the
training set. This priming allowed models trained
on 5-digit by 3-digit multiplications to generalize
to much longer sequences. Previous studies have
examined the arithmetic capabilities of LLMs,
noting both strengths and limitations. Brown et
al. (Brown et al., 2020) showed that GPT-3 can
handle simple arithmetic operations but struggles
with more complex calculations involving large
numbers. This limitation is often due to the
models being trained primarily on textual data,
which includes limited examples of large-number
arithmetic. With similar motivation in this paper,
we compare the arithmetic capability of Mamba
and Transformer architecture.

4.4 Chain-of-Thought (CoT) Fine-tuning

The use of Chain-of-Thought (CoT) (Wei et al.,
2022) fine-tuning in natural language processing
has garnered significant attention in recent years.
CoT fine-tuning involves training language mod-
els on datasets that include intermediate steps,
making it easier for them to process and generate
accurate outputs (Kim et al., 2023). This approach
has been particularly effective in tasks requiring
logical reasoning and arithmetic problem-solving.
Recent work on rational augmentation demon-
strates that providing intermediate steps during
training significantly improves the performance
of language models on arithmetic tasks (Zelik-
man et al., 2023). This study showed that CoT
fine-tuning significantly improved model perfor-
mance on a variety of reasoning tasks, includ-
ing mathematical reasoning, commonsense rea-
soning, and multi-hop question answering. In
the context of our experiment, combining CoT
fine-tuning with LoRA aims to address these lim-
itations by providing structured reasoning paths
and efficiently adapting the model to arithmetic
tasks. Our results indicate that CoT fine-tuning
significantly enhances the model’s ability to solve
complex multiplication problems, aligning with
findings from previous studies (Zelikman et al.,
2023). However, the observed decrease in out-of-
distribution (OOD) accuracy suggests a need for
further research into generalization techniques to
ensure robust performance across diverse inputs.

4.5 In-context learning

In-context learning (ICL) has demonstrated the
ability of transformers to perform tasks based on
a few examples provided in their input. Unlike
traditional approaches that rely on explicit train-
ing or fine-tuning on a specific task, ICL enables
models to infer how to perform a task from the in-
put examples alone, suggesting a form of learn-
ing that is more flexible and adaptable (Grazzi
et al., 2024; Park et al., 2024). Grazzi et al.
(Grazzi et al., 2024) investigate the performance
of a structured state space model named Mamba
in ICL tasks. Their findings indicate that Mamba
matches or even surpasses the ICL performance
of transformers in certain scenarios, particularly
when handling longer input sequences or tasks
that involve simple function approximation and
natural language processing problems. Further-
more, (Grazzi et al., 2024) extends the understand-
ing of how models like Mamba and transform-
ers approach ICL tasks. They propose that these
models incrementally refine their internal repre-
sentations in a way that resembles iterative op-
timization. Performance evaluations across vari-
ous NLP tasks demonstrated that Mamba models,
especially when pre-trained and potentially fine-
tuned on large datasets, can achieve competitive
ICL performance. Comparison with other mod-
els, such as RWKV, LLaMA, and Pythia, across a
range of NLP tasks, including algorithmic, trans-
lation, and knowledge-based tasks, showed that
Mamba models are capable of delivering high
accuracy, with their performance improving as
the number of model parameters increases (Park
et al., 2024). Vilar et al. have explored few-
shot prompting strategies for machine translation
task on PaLM (Chowdhery et al., 2023) suggest-
ing that the downstream machine translation per-
formance is largely correlated with the quality of
in-context examples. Subsequently, several re-
cent works have also explored the ICL capabilities
of LLMs for Machine translation tasks (Robinson
et al., 2023; Zhang and Toral, 2019).

4.6 Memory-based Temporal Graph Neural
Networks MTGNN

Learning on temporal graphs is an area that war-
rants further exploration, especially concerning
the potential of Mamba. Among temporal learning
algorithms, memory-based temporal graph neu-
ral networks (Rossi et al., 2020; Wang et al.,

2021) consistently outperform others in accuracy
for tasks such as node classification or link pre-
diction. However, performance degrades with in-
crease of batch size for memory based TGNNs as
message aggregator of the memory updated fails
to capture temporal depency fully when perform-
ing parallel aggregation and LSTM/GRUCell up-
dates the memory once every batch making the
memory stale with missing information for large
batches. TGL (Zhou et al., 2022) addresses this
issue through random-chunking of the batches
which showed marginal improvements for large
batch sizes. And, for distributed processing as
demonstrated in Dist-TGL (Zhou et al., 2023) and
GNNFlow (Zhong et al., 2023), random-chunking
alone fails to account for the missing intra-batch
dependencies. In this part of the project, we
have used a modified M-TGNN model by replac-
ing Aggregator-LSTM combo of memory updater
with Mamba block.

4.7 Fairness and Bias

The project proposal provided an extensive
overview of our literature review in the realm of
fairness in language models (Blodgett et al., 2020;
Talat et al., 2022), drawing on works, which have
greatly influenced our fairness analysis of Mamba.
Here, we also incorporate additional literature re-
views conducted after the proposal. Fairness in
language models is broadly divided into two main
domains: fairness/bias evaluation and bias miti-
gation. In this study, we assess Mamba’s gen-
der fairness and compare the results with mul-
tiple baselines. Drawing on seminal works by
(Bolukbasi et al., 2016; Matthews et al., 2021),
which employ word analogy tests on word embed-
dings to measure bias in language models, sev-
eral metrics have been devised, including WEAT
(Word Embedding Association Test) (Caliskan
et al., 2017), SEAT (Sentence Embedding Asso-
ciation Test) (May et al., 2019), and CEAT (Con-
textual Embedding Association Test) (Guo and
Caliskan, 2021; Zhao et al., 2019; Kurita et al.,
2019; Nadeem et al., 2020) etc. Probability-based
(Webster et al., 2020) and generated text-based
(Liang et al., 2022) metrics have also been pro-
posed to gauge bias in language models. Surveys
on fairness evaluation metrics in language models
(Gallegos et al., 2023; Li et al., 2023; Silva et al.,
2021) indicate a scarcity of robust metrics suitable
for LLMs, highlighting most post-word analogy

test works (Bolukbasi et al., 2016) being some-
what similar and building upon it. Since models
trained through Mamba have not yet, to the best
of our knowledge, been evaluated for gender bias,
we employ the word analogy test for this purpose.

4.8 Shapley Attribution

Several techniques have been developed to eval-
uate and mitigate bias in language models. One
prominent method involves using SHapley Addi-
tive exPlanations (SHAP) to attribute the contri-
butions of different features to the model’s predic-
tions. This method has been widely adopted for its
ability to provide consistent and accurate feature
attribution. Notably, Ghorbani and Zou (2019) ex-
tended this concept to measure algorithmic fair-
ness, demonstrating how Shapley values can be
used to identify and mitigate biases in machine
learning algorithms (Ghorbani and Zou, 2019).

5 Investigating Arithmetic Capability of
Language Models

5.1 Overview

In this experiment, we aim to investigate the
arithmetic capabilities of various large language
models (LLMs) using synthetic datasets designed
to test both addition and multiplication opera-
tions. We created four distinct datasets, each
focusing on different ranges of digits and types
of arithmetic operations. Our approach involves
fine-tuning pre-trained LLMs using Low-Rank
Adaptation (LoRA) to adapt them to these spe-
cific arithmetic tasks. We evaluated the per-
formance of the models on in-distribution (ID)
and out-of-distribution (OOD) test sets, measur-
ing their accuracy and analyzing their errors to
understand their limitations and capabilities in
performing precise arithmetic operations. The
code of the project can be found in https:
//github.com/Saad-Mahmud/CS685. All
the fine-tuned models can be found in https:
//huggingface.co/saaduddinM.

5.2 Dataset

We investigated the arithmetic capabilities of lan-
guage models using four distinct datasets, each fo-
cusing on either addition or multiplication tasks.
The datasets are synthetically generated to present
arithmetic problems formatted as texts eac consist-
ing of a prompt and followed by an answer. Each

https://github.com/Saad-Mahmud/CS685
https://github.com/Saad-Mahmud/CS685
https://huggingface.co/saaduddinM
https://huggingface.co/saaduddinM

dataset has a training set and an out-of-distribution
(OOD) test set with different ranges of numbers.

5.2.1 Dataset Descriptions
• Addition Small:

– Training Set: Numbers with 1-5 digits
– OOD Test Set: Numbers with 6-10 dig-

its

• Addition Large:

– Training Set: Numbers with 1-25 digits
– OOD Test Set: Numbers with 26-40

digits

• Multiplication Small:

– Training Set: Numbers with 1-5 digits
– OOD Test Set: Numbers with 6-10 dig-

its

• Multiplication Large:

– Training Set: Numbers with 1-10 digits
– OOD Test Set: Numbers with 11-20

digits

Here are examples from the datasets to illustrate
the format:

• Addition:

– Prompt:
<prompt> 00045 + 00032 </prompt>

– Answer: <ans> 00077 </ans>

• Multiplication:

– Prompt:
<prompt> 00003 * 00002 </prompt>

– Answer: <ans> 00006 </ans>

Note that the task is posed as a masked causal
text generation process. So during training, we
concatenated the texts. The datasets are synthet-
ically generated, ensuring controlled and diverse
arithmetic challenges. Basic statistics include:

• Addition Small: 10000 examples

• Addition Large: 10000 examples

• Multiplication Small: 10000 examples

• Multiplication Large: 10000 examples

5.2.2 Data preprocessing
The preprocessing steps included:

• Normalization: Standardizing the length of
numbers with leading zeros.

• Tokenization: Converting text into tokens
suitable for the language model.

• Splitting: Dividing the training data into
training, testing sets and OOD data to OOD
test sets.

• Padding/Truncation: Ensuring uniform in-
put lengths for batch processing.

5.3 Baselines
The chosen baselines include various large lan-
guage models with different architectures and
sizes. The baselines used in this experiment are
11 different language models (LMs). These mod-
els are:

• Mamba1.4B

• Phi1.5B

• Gemma2B

• RGemma2B

• Mamba2.8B

• Zephyr3B

• Mamba7B

• Llama7B

• Llama8B

• Mistral7B

• Gemma7B

All the models were taken from Huggingface.

5.4 Our approach
We employed LoRA (Low-Rank Adaptation) for
fine-tuning the models on the arithmetic datasets.
The primary goal was to adapt the pre-trained lan-
guage models to generate accurate arithmetic an-
swers. The fine-tuning process involved:

• Library: HuggingFace Transformers

• Implementation: Utilized pre-existing im-
plementations for model fine-tuning with
slight modifications.

• Computing Resources: Experiments were
conducted on NVIDIA 4090 24GB GPUs
and 64GB RAM rented from VAST.AI

The dataset was split as follows:

• Training set: 80% i.e. 8000 examples

• Test set: 20% i.e. 2000 examples

• OOD set: 2000 examples.

Here are the training hyperparameters used:

• Batch size: 8

• Learning rate: 2e-4

• Epochs: 8

• Optimizer: AdamW

Here is the LoRA config:

• r: 8

• lora alpha: 16

• lora dropout: 0.1

• target modules Mamba: [”x proj”, ”em-
beddings”, ”in proj”, ”out proj”]

• target modules Transformer: [”q proj”,
”up proj”, ”k proj”, ”down proj”, ”v proj”]

• textbftarget module RecurrentGemma:
[”q proj”, ”o proj”, ”k proj”,”v proj”]

• task type: ”CAUSAL LM”

5.5 Results and Analysis

The results show that:

• *Mambas Perform Better at Multipli-
cation: The Mamba models consistently
outperformed other models of comparable
size in multiplication tasks. For instance,
‘Mamba-7B‘ achieved a training accuracy of
0.53 and a test accuracy of 0.28 in the Mul-
tiplication Small dataset compared to Llama
8B a SOTA transformer model. Similarly,
in the Multiplication Large dataset, Mamba
shows equal performance to Llama 8B.

• *Poor Performance in Addition Tasks: The
same Mamba models performed poorly on
addition tasks. For example, ‘Mamba-7B‘
had a training accuracy of only 0.12 and a
test accuracy of 0.07 in the Addition Large
dataset compared to the near-perfect accu-
racy of transformer models.

• *No Zero-shot Training Effect: The zero-
shot accuracies were negligible across all
models in the multiplication datasets, indi-
cating that the pre-trained models did not
have inherent arithmetic multiplication capa-
bilities that could be leveraged without fine-
tuning. Even in the case of addition, the ef-
fect is small. This indicates that the perfor-
mance of Mamba in multiplication is not an
artifact of pre-training but rather its inherent
capability.

• *Out-of-Distribution (OOD) Performance:
The Mamba models showed no capability to
generalize to OOD examples. Their OOD ac-
curacies remained at 0, highlighting a signif-
icant limitation in handling numbers outside
the training range.

• Gemma Models Show Superior General-
ization: The small Gemma model demon-
strated good performance in both addition
and multiplication tasks.

5.5.1 Error Analysis
We consider 0-1 Metric for accuracy i.e. an an-
swer is either correct or wrong. Most wrong an-
swers follow the correct text generation structure
but ultimately provide wrong answer to the ques-
tion. For example:

• Prompt: <prompt> 00045 + 00032 </prompt>

• Answer: <ans> 00087 </ans>

In certain cases, the model produces answers in
the wrong format which is also considered wrong:

• Prompt: <prompt> 00045 + 00032 </prompt>

• Answer: <ans>00077<and><ans>00077</ans>

Finally, in OOD case sometimes the model gen-
erates the correct answer up to a length and prints
0 for rests:

• <prompt>085944181*095363251 </prompt>

Mamba1.4B
Phi1.5B

Gemma2B

RGemma2B

Mamba2.8B

Zephyr3B

Mamba7B
Llama7B

Llama8B

Mistr
al7B

Gemma7B

Models

0.0

0.1

0.2

0.3

0.4

0.5
Ac

cur
acy

Model Accuracy Comparison Multiplication_Small Dataset
Train Accuracy
Test Accuracy
OOD Accuracy
Zeroshot Accuracy

Mamba1.4B
Phi1.5B

Gemma2B

RGemma2B

Mamba2.8B

Zephyr3B

Mamba7B
Llama7B

Llama8B

Mistr
al7B

Gemma7B

Models

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ac
cur

acy

Model Accuracy Comparison Multiplication_Large Dataset
Train Accuracy
Test Accuracy
OOD Accuracy
Zeroshot Accuracy

Figure 1: Model Accuracy Comparison for Multiplication Small, and Multiplication Large Datasets

• <ans> 000307432 </ans>

Most of the errors occur due to a lack of gener-
alization.

5.6 Conclusion

The results of this experiment demonstrate that
Mamba models exhibit a potential advantage in
performing certain sequence generation tasks, par-
ticularly multiplication, compared to transformer-
based models. Despite their superior performance
in multiplication tasks, it is noteworthy that multi-
plication is theoretically more complex than ad-
dition due to the need for carrying over digits
and handling larger intermediate values. This
makes the Mamba models’ success in multipli-
cation tasks even more significant. However,
the Mamba models consistently underperformed
in addition tasks, suggesting a limitation in their
adaptability to simpler arithmetic operations.

A critical area for improvement for Mamba
models is their out-of-distribution (OOD) perfor-

mance. The OOD accuracies remained at zero,
highlighting a significant limitation in handling
numbers outside the training range. Enhancing
the generalization capabilities of Mamba models
to perform well on OOD examples is an essential
next step.

In summary, while Mamba models show
promise in specific sequence generation tasks and
complex arithmetic operations, there is a clear
need for further research and development to im-
prove their performance in simpler tasks and OOD
scenarios.

6 Chain-of-Thought Fine-tuning for
Arithmetic

6.1 Overview

In this experiment, we investigated the arithmetic
Chain-of-Thought (CoT) capability of language
models (LMs). We fine-tuned the models us-
ing LoRA (Low-Rank Adaptation) on an arith-
metic CoT dataset, which comprised two types

Mamba1.4B
Phi1.5B

Gemma2B

RGemma2B

Mamba2.8B

Zephyr3B

Mamba7B
Llama7B

Llama8B

Mistr
al7B

Gemma7B

Models

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cur
acy

Model Accuracy Comparison Addition Small Dataset
Train Accuracy
Test Accuracy
OOD Accuracy
Zeroshot Accuracy

Mamba1.4B
Phi1.5B

Gemma2B

RGemma2B

Mamba2.8B

Zephyr3B

Mamba7B
Llama7B

Llama8B

Mistr
al7B

Gemma7B

Models

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cur

acy

Model Accuracy Comparison Addition_Large Dataset
Train Accuracy
Test Accuracy
OOD Accuracy
Zeroshot Accuracy

Figure 2: Model Accuracy Comparison for Addition Small, Addition Large Datasets

of texts: one with step-by-step CoT explanations
and one without. The CoT texts provided de-
tailed intermediate steps for solving multiplication
problems, whereas the without-CoT texts only in-
cluded the final answers. We created two datasets
for comparison: the CoT multiplication dataset,
containing 5000 CoT-augmented texts and 5000
normal texts, and the without-CoT multiplication
dataset, containing 10000 normal multiplication
texts. Several Mamba and transformer LMs were
trained on both datasets, and their performance
was evaluated on in-distribution (ID) and out-of-
distribution (OOD) data. The results demonstrated
that models trained on the CoT dataset generally
outperformed those trained without CoT. How-
ever, differences between the Mamba and Trans-
former models were negligible indicating they
have similar CoT reasoning capabilities. The
code of the project can be found in https://
github.com/Saad-Mahmud/CS685 . All
the fine-tuned models can be found in https:

//huggingface.co/saaduddinM .

6.2 dataset
The dataset for this experiment consists of arith-
metic problems, specifically multiplication tasks.
The dataset is divided into two types of texts: one
with a step-by-step Chain-of-Thought (CoT) and
one without CoT. The CoT texts provide inter-
mediate steps for solving multiplication problems,
while the without-CoT texts provide only the final
answer.

6.3 Examples from the dataset
Without CoT:

<prompt>000085944181*000095363251
</prompt> <ans> 000181307432 </ans>

With CoT:

<prompt> 0000097321 * 05567
</prompt>
<Chain of Thought>
0000097321 * 7 = 000000000681247

https://github.com/Saad-Mahmud/CS685
https://github.com/Saad-Mahmud/CS685
https://huggingface.co/saaduddinM
https://huggingface.co/saaduddinM

0000097321 * 6 = 000000005839260
0000097321 * 5 = 000000048660500
0000097321 * 5 = 000000486605000
0000097321 * 0 = 000000000000000
7+0+0+0+0 = 7
4+6+0+0+0 = 0
2+2+5+0+0 = 0
1+9+0+5+0 = 6
8+3+6+0+0 = 8
6+8+6+6+0 = 7
0+5+8+6+0 = 1
0+0+4+8+0 = 4
0+0+0+4+0 = 5
0+0+0+0+0 = 0
0+0+0+0+0 = 0
0+0+0+0+0 = 0
0+0+0+0+0 = 0
0+0+0+0+0 = 0
</Chain of Thought>
<ans> 000000541786007 </ans>

The data preprocessing involved normalizing
the numbers to a fixed length by padding with
zeros. Additionally, the Chain-of-Thought texts
were structured to clearly delineate each multipli-
cation step and subsequent addition. No manual
annotation was required for this dataset as it is au-
tomatically generated based on arithmetic rules.

6.4 Baselines
The baselines for this experiment are:

• Mamba 2.8B

• Stablelm Zephyr 3B

• Mamba 7B

• Llama-3 8B

These models were chosen for their varying
sizes, providing a broad comparison spectrum. All
the models were taken from Huggingface.

6.5 Our approach
Our approach involves fine-tuning the language
models using LoRA (Low-Rank Adaptation) on
two datasets: one with CoT texts and one without
CoT texts. The models were trained to generate
the correct answer given the prompt.

• Library: HuggingFace Transformers

• Implementation: Utilized pre-existing im-
plementations for model fine-tuning with
slight modifications.

• Computing Resources: Experiments were
conducted on NVIDIA 4090 24GB GPUs
and 64GB RAM rented from VAST.AI

The dataset was split as follows:

• Training set: 80% i.e. 8000 examples

• Test set: 20% i.e. 2000 examples

• OOD set: 2000 examples.

Here are the training hyperparameters used:

• Batch size: 2

• Gradient accumulation: 4

• Learning rate: 2e-4

• Epochs: 8

• Optimizer: AdamW

Here is the LoRA config:

• r: 8

• lora alpha: 16

• lora dropout: 0.1

• target modules Mamba: [”x proj”, ”em-
beddings”, ”in proj”, ”out proj”]

• target modules Transformer: [”q proj”,
”up proj”, ”k proj”, ”down proj”, ”v proj”]

• textbftarget module RecurrentGemma:
[”q proj”, ”o proj”, ”k proj”,”v proj”]

• task type: ”CAUSAL LM”

6.6 Results

Models trained with CoT consistently demon-
strated higher test accuracy compared to those
trained without CoT. For example, the Mamba
2.BB model achieved a 0.17 test accuracy with
CoT compared to 0.09 without CoT, representing
an 88.9% improvement. Similar improvements
were observed across other models. This suggests
that the step-by-step guidance provided by CoT
helps models better understand and solve arith-
metic problems.

However, a notable decrease in OOD accuracy
was observed for models trained with CoT. For in-
stance, the OOD accuracy of the Mamba 2.8B

Mam
ba

2.8
B

Zep
hy

r3B

Lla
ma8

B

Mam
ba

7B

Models

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra

cy
Comparison of Train, Test, and OOD Accuracy with and without CoT

With CoT - Train
With CoT - Test
With CoT - OOD
Without CoT - Train
Without CoT - Test
Without CoT - OOD

Figure 3: Performance comparison of models on CoT and without-CoT datasets

model was 0.07 with CoT compared to 0.09 with-
out CoT. This decrease can be attributed to the po-
tential overfitting on the CoT examples, where the
model relies heavily on the intermediate steps pro-
vided during training and struggles to generalize to
unseen data where such steps are not available.

6.6.1 Error Analysis
Similar to the previous section, most wrong an-
swers follow the correct text generation structure
but ultimately provide wrong answers to math.
Additionally, in the OOD case sometimes the
model generates the correct answer up to a length
and prints 0 for rests Finally, the model produces
answers in the wrong format which is also consid-
ered wrong:

• <prompt> 00045 + 00032 </prompt>

• <ans> 00077 <ans>
<ans> 00077 </ans>
<Chain of Thought>

Most of the errors occur due to a lack of general-
ization and overfitting to reasoning.

6.7 Conclusions
Comparing the Mamba models with the
transformer-based models reveals mixed re-
sults. The Mamba-2.8B model outperformed
the Zephyr-3B model in train, test, and OOD

accuracy. Conversely, the Llama-8B model
outperformed the Mamba-7B model on the test
and OOD sets but underperformed on the train set.
Therefore, it is not conclusive whether Mamba or
transformer-based models have superior reasoning
capabilities. From our experiment, we can only
conclude that neither model type has a clear
advantage over the other in CoT tasks.

7 Evaluating In-Context Learning (ICL)
Performance of LMs on Arithmetic
and Sentiment Analysis Tasks

7.1 Overview

This evaluation investigates the In-context learn-
ing (ICL) capabilities of pre-trained language
models on arithmetic tasks and sentiment analysis.
To perform the experiments, we created synthetic
datasets. The main goal is to design prompts us-
ing different strategies (zero-shot, few-shot, chain-
of-thought) and evaluate the performance of the
language models on this task. We performed two
types of arithmetic tasks. (1) Regular Arith-
metic: Involves simple arithmetic operations (ad-
dition, subtraction, multiplication, and division1).
(2) Jumbled Arithmetic: Involves arithmetic op-
erations; however, we have introduced three new
arithmetic symbols ($, #, and @). The interpreta-

1We have used integer division

tions of these symbols are:

• $: This is addition. So, a$b = a+ b.

• #: This is subtraction. So, a#b = a− b.

• @: This is the multiplication of a+b and a−b.
So, a@b = (a+ b) ∗ (a− b).

The motivation for using jumbled arithmetic
is to check whether the model is actually learn-
ing from the demonstrations or predicting from
its memory. For sentiment analysis, the task in-
volves classifying the sentiment (Positive, Nega-
tive, or Neutral) of a given statement. The code
used for evaluation in this Section 7 is publicly
available at https://github.com/amit-sarker/ICL-
Analysis-NLP-685.

7.2 Dataset
7.2.1 Regular Arithmetic
For this task, we have created seven synthetic
datasets using Python scripts with 100 prompts.
We have changed the number of demonstrations in
each dataset (zero-shot and few-shot prompting).
We have created a separate dataset for the zero-
shot and few-shot with 0, 2, 4, 6, 8, and 10 demon-
strations. We also created another dataset that in-
cludes 5 demonstrations with random labels. The
prompts include demonstrations for simple arith-
metic operations followed by a task that the mod-
els need to complete. The operations include two
variables, and the values are randomly chosen be-
tween (1, 100). Here are two examples of zero-
shot and few-shot (with 2 demonstrations):

• Calculate the next problem and provide the
answer:
Calculate 70 * 58? The correct answer is:

• 1. Calculate 8 + 67. The answer is 75.
2. Calculate 81 + 5. The answer is 86.
—
Calculate the next problem and provide the
answer:
Calculate 24 - 47? The correct answer is:

Here is an example prompt of the random label
dataset:

• 1. Calculate 11 - 3. The answer is 58.
2. Calculate 81 + 66. The answer is 66.
3. Calculate 72 - 63. The answer is 61.
4. Calculate 10 * 3. The answer is 14.

5. Calculate 29 + 28. The answer is 38.
—
Calculate the next problem and provide the
answer:
Calculate 65 + 60? The correct answer is:

7.2.2 Jumbled Arithmetic
For this task, we have created six synthetic
datasets with 50 prompts using a Python script.
In this task, we have created separate datasets for
few-shot (2, 4, 6, 8, 10 demonstrations) and chain-
of-thought (CoT) prompting with 3 demonstra-
tions. Unlike regular arithmetic prompts, we have
created each prompt with the same arithmetic op-
erations for the few-shot prompting. Otherwise,
the models get everything wrong most of the time.
For CoT, as we have provided the reasoning, we
did not keep this restriction. Moreover, we have
used the operation @ = a ∗ b for simplicity in
this task. Three demonstrations have been pro-
vided with reasoning for three different operations
in each prompt. Here are two examples of few-
shot (with 2 demonstrations) and CoT prompting:

• 1. Calculate 58 $ 50. The answer is 108.
2. Calculate 58 $ 35. The answer is 93.
—
Calculate the next problem and provide the
answer:
Calculate 97 $ 19? The correct answer is:

• 1. Calculate 45 # 11. The answer is 34.
Reason: # is subtraction. a # b = a - b. So, 45
11 = 34
2. Calculate 14 $ 9. The answer is 23.
Reason: $ is addition. a $ b = a + b. So, 14 $
9 = 23
3. Calculate 54 @ 3. The answer is 162.
Reason: @ is multiplication. a @ b = a * b.
So, 54 @ 3 = 162
—
Calculate the next problem and provide the
answer:
Calculate 79 $ 9? The correct answer is:

7.2.3 Sentiment Analysis
To evaluate the models on this task, four syn-
thetic datasets were created (dataset with true la-
bel, dataset with random label, dataset with no
demonstration, and dataset with CoT prompting)
with 50 prompts in each of them. All the datasets
contain 3 demonstrations in each prompt, except
the dataset with no demonstrations. Each of the

https://github.com/amit-sarker/ICL-Analysis-NLP-685
https://github.com/amit-sarker/ICL-Analysis-NLP-685

demonstrations is a (Statement, Sentiment) pair.
All the demonstrations and final tasks are cre-
ated using GPT-4o. Here are two examples of the
dataset with true label and CoT prompting:

• 1. Statement: The meal was delicious and the
service was excellent. Sentiment: Positive.
2. Statement: It rained all day during our out-
door event. Sentiment: Negative.
3. Statement: She arrived at the meeting on
time. Sentiment: Neutral.
—
Classify the sentiment of the following state-
ment:
Statement: The sunset over the ocean was
breathtaking. Sentiment:

• 1. Statement: The meal was delicious and the
service was excellent. Sentiment: Positive.
Reason: The statement describes enjoyment
and good service.
2. Statement: It rained all day during our out-
door event. Sentiment: Negative.
Reason: The statement describes an unfavor-
able situation.
3. Statement: She arrived at the meeting on
time. Sentiment: Neutral.
Reason: The statement provides a factual de-
tail without emotional context.
—
Classify the sentiment of the following state-
ment:
Statement: The sunset over the ocean was
breathtaking. Sentiment:

7.3 Baselines

For the evaluation of this task, the following lan-
guage models are used:

• Mamba-2.8b

• Cerebras-btlm-3b

• Mamba-7b

• Llama2-7b

• Mistral-7b

The Cerebras-btlm-3b was used for a fair compar-
ison with Mamba-2.8b. Llama2-7b and Mistral-7b
were used for comparison with Mamba-7b. All the
models were taken from Huggingface.

7.4 Our approach
The main goal of this analysis was to evaluate the
performance of the pre-trained language models
on various ICL tasks. Therefore, the pre-trained
models are taken Huggingface without modifying
the models.

• Library: Huggingface transformers

• Implementation: Used existing implemen-
tations of the LMs

• Computing Resource: Google Colab Pro.
T4 15 GB GPUs are mainly used with 51 GB
RAM.

The following configurations are used to generate
output from each model:

• max new tokens=64

• early stopping=True

• num return sequences=1

The model’s responses for each dataset were
saved to a text file. We have used Python scripts
to parse the answers from the responses. We used
Python’s regex library to extract the numeric an-
swers for the arithmetic tasks. To evaluate the
models, standard accuracy is calculated for the
arithmetic tasks. For sentiment analysis tasks, we
used the Macro-F1 score. The Macro-F1 score is
calculated by taking the F1 score for each senti-
ment class and then averaging them. This means
each class contributes equally to the final score,
regardless of the number of samples in each class.

7.5 Results and Analysis
This section describes the performance evaluation
of the five Language Models (LMs) on three dif-
ferent tasks: regular arithmetic, jumbled arith-
metic, and sentiment analysis. We also analyzed
each model’s performance for a particular task by
changing the prompt strategies.

7.5.1 Regular Arithmetic
Figure 4 shows the accuracy of the models in pre-
dicting the correct answers to simple arithmetic
tasks. Key observations are as follows:

• Mistral-7b consistently outperforms the
other models, achieving the highest accuracy
across all numbers of demonstrations. Its ac-
curacy ranges from around 80% to 90%, in-
dicating robust performance regardless of the
demonstration counts.

Figure 4: Model Accuracy Comparison for Regular Arithmetic Tasks Using Different Number of Demonstrations

Figure 5: Model Accuracy Comparison for Regular Arithmetic Tasks on Dataset with no Demonstrations, Demon-
strations with True Labels, and Demonstrations with Random Labels

• Mamba-7b shows an improvement in ac-
curacy as the number of demonstrations in-
creases, peaking at around 65% with 6
demonstrations. This indicates that Mamba-
7b benefits from additional demonstrations
up to a point. A similar trend can be ob-
served for Mamba-2.8b, however, its accu-
racy drops later.

• Llama2-7b demonstrates moderate variabil-
ity, with accuracy fluctuating between 30%
and 50%. It shows the highest improvement
at 8 demonstrations, reaching an accuracy of

51%.

• Cerebras-btlm-3b remains consistently low
in accuracy, hovering around 18% to 24%.
This model shows minimal improvement
with increasing demonstrations, indicating
limited benefit from additional context.

Figure 5 shows the accuracy of the model across
various demonstration types. The three categories
are zero demonstrations, demonstrations with true
labels, and demonstrations with random labels.
The analysis reveals that providing demonstrations

enhances the performance of language models on
arithmetic tasks, with most models showing im-
proved accuracy. The extent of this improve-
ment varies across models. Overall, the findings
highlight the importance of context in enhancing
model performance and the varying degrees to
which different models can utilize this context.

• Mamba-2.8b and Mamba-7b benefit the
most from demonstrations, displaying robust
performance regardless of the accuracy of the
labels.

• Mistral-7b achieves the highest accuracy
with no demonstrations; however, it shows
the highest sensitivity to the correctness of
the demonstrations. The model achieves ex-
ceptional performance with true labels but
drops with random labels.

• On the other hand, Cerebras-btlm-3b shows
limited improvement, which suggests poten-
tial limitations in its ability to use contextual
information.

• Llama2-7b shows the highest accuracy when
the labels of the demonstrations are ran-
dom. The overall performance shows that the
model does better when demonstrations are
provided.

7.5.2 Jumbled Arithmetic
We changed the arithmetic operations as described
in Section 7 to better understand how the mod-
els predict the answers to the arithmetic tasks.
We planned to change the signs of the operations
to see whether the models were predicting based
on their pre-training data or if they were actu-
ally learning from the demonstrations. Figure 6
shows the models’ performance on the jumbled
arithmetic tasks.

• Mamba-2.8b, Mamba-7b, and Cerebras-
btlm-3b all of these models were poor in
terms of accuracy in this task. Mamba-
7b shows 2% and 6% accuracy and shows
a slight improvement at 6 demonstrations
before dropping again. Mamba-2.8b and
Cerebras-btlm-3b exhibit the weakest perfor-
mance; Mamba-2.8b’s accuracy ranges be-
tween 2% and 8% without a clear trend, while
Cerebras-btlm-3b remains consistently at 0%
accuracy across all numbers of demonstra-
tions

• Mistral-7b consistently outperforms the
other models. It shows a clear upward trend
in accuracy as the number of demonstrations
increases. It starts at 40% accuracy with 2
demonstrations and peaks at 68% with 10
demonstrations, indicating a strong capabil-
ity to leverage additional context effectively.

• Llama2-7b also shows a positive response to
increasing demonstrations. Its accuracy in-
creases from 18% at 2 demonstrations to 32%
at 4 and 10 demonstrations with some fluctu-
ations.

After getting this accuracy, we decided to use
Chain-of-Thought (CoT) prompting to see if we
got a better result. Figure 7 shows the performance
of the model using CoT prompting.

• Mistral-7b stands out with a significantly
higher accuracy of 66%, demonstrating its
strong ability to leverage the chain of thought
approach effectively.

• Mamba-7b shows a moderate accuracy of
18%, indicating some benefit from the chain
of thought prompting but far less effectively
than Mistral-7b. Llama2-7b achieves 16%
accuracy, showing a slight improvement. But
still underperforming relative to the Mistral-
7b.

• Cerebras-btlm-3b and Mamba-2.8b dis-
play the lowest accuracies, at 8% and 6%, re-
spectively. This suggests the limited ability
to benefit from the chain of thought prompt-
ing.

7.5.3 Sentiment Analysis
For sentiment analysis, we utilized four datasets
for each model: dataset with no demonstra-
tions, demonstrations with true labels, demonstra-
tions with random labels, and demonstrations with
Chain-of-Thought (CoT) prompting. We have
calculated the Macro-F1 scores for each model.
Figure 8 shows the performance of the mod-
els. The analysis reveals that all models bene-
fit from demonstrations, particularly with true la-
bels. CoT prompting significantly enhances per-
formance, especially for Cerebras-btlm-3b and
Llama2-7b. Random label demonstrations also
contribute to improved performance but to a lesser
extent than true labels. Mistral-7b consistently
outperforms other models across all conditions,

Figure 6: Model Accuracy Comparison for Jumbled Arithmetic Tasks Using Different Number of Demonstrations

Figure 7: Model Accuracy Comparison for Jumbled Arithmetic Tasks Using Chain-of-Thought (CoT) Prompting

demonstrating its capability to use contextual in-
formation for sentiment analysis tasks.

• Mamba-2.8b Shows improvement with
demonstrations. Its highest Macro-F1 is
76.81% with true label demonstrations.
However, CoT prompting results in moderate
results (50.16%). The model benefits signif-
icantly from accurate context, with a drop
when using random labels (56.12%).

• Mamba-7b shows moderate performance
(52.94%) with no demonstration and shows
good improvements with true label (66.3%)
and CoT prompting (62.27%). The use
of random labels also improves accuracy
(59.35%). Therefore, Mamba-7b gains better
Macro-F1 when more context is provided.

• Cerebras-btlm-3b starts with a low Macro-

Figure 8: Model Macro-F1 Comparison for Sentiment Analysis Tasks on Dataset with no Demonstrations, Demon-
strations with True Labels, Demonstrations with Random Labels, and Demonstrations with Chain-of-Thought
(CoT) Prompting

F1 (21.42%) for no demonstrations but bene-
fits the most from CoT prompting (58.0%).
It also surpassed its performance with true
(51.43%) and random label demonstrations
(56.41%). This indicates CoT prompting’s
effectiveness in enhancing its performance.

• Llama2-7b shows the weakest performance
without demonstrations (27.7%) but shows
significant improvement with CoT prompting
(74.42%), followed by true labels (64.46%).
Random labels (52.93%) also improve per-
formance, which tells the model’s sensitivity
to contextual accuracy.

• Mistral-7b consistently outperforms all
other models, with a high Macro-F1
(56.92%) with no demonstrations and
exceptional performance with true label
demonstrations (91.85%). It maintains high
Macro-F1 with both random labels (89.37%)
and CoT prompting (89.56%). This indicates
its superior ability to utilize additional
context effectively.

7.6 Error analysis

7.6.1 Arithmetic Tasks
In this section, we describe the failures of the five
models on arithmetic and sentiment analysis task.
Here, we provide the types of arithmetic and sen-
timent tasks the models could not solve correctly
and provide some of the failed tasks as examples.
The complete list of errors by each model can be
found in the following github links:

• Regular Arithmetic: https://github.com/amit-
sarker/ICL-Analysis-NLP-685/Regular
Arithmetic/Error Analysis

• Jumbled Arithmetic:
https://github.com/amit-sarker/ICL-
Analysis-NLP-685/Jumbled Arith-
metic/Error Analysis

• Sentiment Analysis: https://github.com/amit-
sarker/ICL-Analysis-NLP-685/Sentiment
Anlysis/Error Analysis

Mamba-2.8b

The Mamba-2.8b model encounters a variety
of errors when attempting to solve arithmetic
problems. It fails to solve arithmetic prob-
lems due to errors in division and multiplica-
tion, handling negative results, and generating re-
sponses for complex or larger numerical opera-
tions. The model frequently miscalculates divi-
sion (e.g., 2200 / 40, resulting in 56 instead of 55)
and multiplication problems (e.g., 93 * 83, yield-
ing 7723 instead of 7719). It also struggles signif-
icantly with negative results, often providing pos-
itive counterparts (e.g., 28 - 38 resulting in 10 in-
stead of -10). Additionally, the model often fails
to generate any response for more complex cal-
culations (e.g., 5612 / 61), and occasionally pro-
duces completely unrelated outputs (e.g., 1 - 97
resulting in 3871). These patterns indicate a need
for targeted improvements in handling arithmetic
complexity and numerical ranges.

https://github.com/amit-sarker/ICL-Analysis-NLP-685/tree/master/Regular%20Arithmetic/Error%20Analysis
https://github.com/amit-sarker/ICL-Analysis-NLP-685/tree/master/Regular%20Arithmetic/Error%20Analysis
https://github.com/amit-sarker/ICL-Analysis-NLP-685/tree/master/Regular%20Arithmetic/Error%20Analysis
https://github.com/amit-sarker/ICL-Analysis-NLP-685/tree/master/Jumbled%20Arithmetic/Error%20Analysis
https://github.com/amit-sarker/ICL-Analysis-NLP-685/tree/master/Jumbled%20Arithmetic/Error%20Analysis
https://github.com/amit-sarker/ICL-Analysis-NLP-685/tree/master/Jumbled%20Arithmetic/Error%20Analysis
https://github.com/amit-sarker/ICL-Analysis-NLP-685/tree/master/Sentiment%20Anlysis/Error%20Analysis
https://github.com/amit-sarker/ICL-Analysis-NLP-685/tree/master/Sentiment%20Anlysis/Error%20Analysis
https://github.com/amit-sarker/ICL-Analysis-NLP-685/tree/master/Sentiment%20Anlysis/Error%20Analysis

Mamba-7b
The Mamba-7b model exhibits a range of errors
when attempting to solve arithmetic problems,
particularly struggling with multiplication and di-
vision operations, handling negative results, and
maintaining precision with larger numbers. The
model frequently provides incorrect results for
multiplication (e.g., 3237 instead of 3267 for 83
* 39) and division (e.g., 64 instead of 65 for 455 /
7). It also shows a notable pattern of errors in han-
dling negative results, often responding with pos-
itive counterparts (e.g., 10 instead of -10 for 55 -
65). Additionally, the model often generates re-
sponses that are close but not accurate, suggesting
issues with precision (e.g., 5275 instead of 5325
for 75 * 71). These errors indicate the model’s dif-
ficulty in performing precise calculations and han-
dling more complex numerical operations, high-
lighting areas where further fine-tuning and train-
ing on diverse arithmetic problems could improve
its performance.

Cerebras-Btlm-3b
The Cerebras-btlm-3b model shows several types
of failures when attempting to solve arithmetic
problems. The model exhibits a range of semantic
and syntactic errors when solving arithmetic tasks.
It particularly struggles with multiplication and di-
vision operations, negative results, and problems
involving larger numbers. These patterns indi-
cate areas where the model’s arithmetic reason-
ing could be improved. Particularly through fine-
tuning on diverse arithmetic problems and enhanc-
ing its ability to handle complex calculations and
larger numerical ranges. Here are some example
problems that the model fails to solve:

In Question: Calculate 24 - 47?, the model re-
sponded with 27 instead of -23, indicating a mis-
understanding of the subtraction operation. Simi-
larly, in Question: Calculate 43 - 95?, the model
responded with 48 instead of -52. In Question:
Calculate 54 - 66?, the model responded nothing.
Similarly, in Question: Calculate 48 - 98?, the
model responded with 50 instead of -50. There are
many instances where the model fails to produce
any response, such as in Question: Calculate 61 *
70? and Question: Calculate 6478 / 79?. This pat-
tern repeats frequently, suggesting the model may
be unable to handle certain numerical ranges or
complex operations.

Some responses are incomplete or entirely ab-
sent. This indicates potential issues with the

model’s ability to handle certain calculations or
operations. For example, in Question: Calcu-
late 612 / 17?, the response was a series of dig-
its (3.833333333333333) that do not correspond
to any reasonable answer. Oftentimes, the model
generates responses that are totally out of con-
text. For example, Calculate 89 + 58?, the model’s
response is “A: You can use the following for-
mula: frac{a+b}{c}=frac{a}{c}+frac{b}{c} A:
frac{a+b}{c}=frac{a}{c}+frac”.

Sometimes, the model writes code. For exam-
ple, for Calculate 24 - 47?, the response is: You
can use the following code:
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();

The model fails consistently with multiplication
and division problems, either by providing incor-
rect results or no response at all. For instance,
Question: Calculate 58 * 22? resulted in 1038 in-
stead of 1276, and Question: Calculate 54 / 18?
resulted in 2 instead of 3. The model struggles
more with larger numbers and operations involv-
ing large multipliers or divisors. This is evident in
problems like Question: Calculate 94 * 79? and
Question: Calculate 2703 / 51?.

Llama2-7b

The Llama2-7b model exhibits a variety of er-
rors when solving arithmetic problems, particu-
larly struggling with subtraction resulting in neg-
ative numbers, division, and multiplication. The
model frequently provides incorrect positive coun-
terparts for negative results (e.g., -53 instead of 53
for 29 - 82, and -76 instead of 76 for 13 - 89). It
also demonstrates significant issues with division,
often failing to generate any response (e.g., 2336 /
73 and 49 * 78), or providing incorrect results that
are close but not accurate (e.g., 4212 / 81 resulting
in 51 instead of 52). Multiplication errors are also
common, with the model producing responses that
are either entirely off (e.g., 56 * 61 yielding 13160
instead of 3416) or slightly incorrect (e.g., 97 *
60 resulting in 5920 instead of 5820). Addition-
ally, the model sometimes fails to generate any re-
sponse for simple addition problems (e.g., 51 + 2
and 36 + 15), indicating issues with handling even
basic arithmetic operations.

Mistral-7b
The Mistral-7b model demonstrates a pattern of
errors primarily characterized by minor miscalcu-
lations in multiplication and division, and a con-
sistent failure to handle negative results correctly.
The model often provides answers that are close
to the correct result but not accurate, such as 3436
instead of 3416 for 56 * 61, and 5395 instead of
5415 for 95 * 57. This suggests a tendency to
make small numerical errors in calculations. Ad-
ditionally, the model frequently fails to recognize
negative results, as seen in responses like 29 in-
stead of -29 for 39 - 68, and 42 instead of -42 for
2 - 44. These types of errors indicate that while
the model has a generally strong understanding of
arithmetic operations, it struggles with precision
and the correct handling of negative values, sug-
gesting a need for further fine-tuning to improve
accuracy in these areas.

Jumbled Arithmetic
The overall performance of the models on this task
is very poor, except for the Mistral-7b model. The
other models consistently provide very low accu-
racy on this task. The worst is the Cerebras-Btlm-
3b, which usually generates unrelated responses
with no sign of solving the task. We did not find
any common patterns for the failures; the models
failed to learn from the prompts and were confused
between the arithmetic operations. For example,
Calculate 37 $ 6. The answer is 43. But often-
times, the models either performed subtraction or
multiplication.

Sentiment Analysis
The most common failure for the sentiment anal-
ysis tasks is characterizing the “Neutral” labels.
The models either predicted “Positive” or “nega-
tive” for these tasks. For example, Statement: The
train arrives at 8 PM. It should have been a neutral
sentiment task, but the models failed.

7.7 Conclusion
In summary, the evaluation of the language mod-
els on regular arithmetic tasks reveals signifi-
cant differences in their ability to use demonstra-
tions to enhance performance. Mistral-7b consis-
tently outperforms the other models, demonstrat-
ing robust performance regardless of the number
of demonstrations. Mamba-7b shows improve-
ment with increased demonstrations, though its
performance fluctuates. Mamba-2.8b follows a

similar trend but declines at higher demonstration
counts. Llama2-7b exhibits moderate variability,
with the highest performance at a mid-range num-
ber of demonstrations. In contrast, Cerebras-btlm-
3b shows minimal improvement, indicating lim-
ited benefit from additional context.

In the jumbled arithmetic tasks, where the oper-
ations were altered, Mistral-7b is the best in per-
formance again. It shows a clear upward trend
with increased demonstrations. Mamba-2.8b,
Mamba-7b, and Cerebras-btlm-3b exhibit weak
performance overall. Mamba-7b shows slight
improvement at a certain point before declin-
ing again, while Llama2-7b responds positively
to increased demonstrations despite some fluc-
tuations. The introduction of Chain-of-Thought
(CoT) prompting significantly enhances the per-
formance of Mistral-7b. This highlights its strong
ability to leverage this approach. Mamba-7b and
Llama2-7b show moderate improvements with
CoT prompting. On the other hand, Cerebras-
btlm-3b and Mamba-2.8b display limited benefits,
which indicates their challenges in adapting to this
strategy.

In sentiment analysis tasks, all models benefit
from demonstrations, particularly when true la-
bels are provided. Mistral-7b has exceptional per-
formance, maintaining high scores across all con-
ditions. Mamba-2.8b and Mamba-7b show sub-
stantial improvements with true labels and moder-
ate gains with CoT prompting. Cerebras-btlm-3b
starts with lower performance but benefits signif-
icantly from CoT prompting. Llama2-7b was the
weakest without demonstrations but shows signif-
icant improvement with CoT prompting and true
labels. These findings tell the effectiveness of CoT
prompting and accurate demonstrations in enhanc-
ing model performance across various tasks.

8 Investigating Machine Translation of
Language Models

8.1 Overview the experiment

In this experiment, we aim to investigate the ef-
ficacy of machine translation through In-Context
Learning (ICL) for converting English to Span-
ish. Using the WMT-14 dataset, which includes
diverse language phenotypes and structures, our
approach involves prompting pre-trained models
with varying numbers of example translations,
known as ”shots.” We explore zero-shot, two-shot,
and few-shot scenarios to evaluate how well the

Figure 9: In Context Learning in Machine translation

models perform translations based on the pro-
vided context. We use five pre-trained mod-
els: MAMBA-2.8b, Btlm-3b, Mistral- 7B, Pythia-
2.8B, and LLama-7B Testing involves translating
sentences such as ”The book is on the table” and
”The flowers are blooming in the garden” to Span-
ish. We have used BLEU (Bilingual Evaluation
Understudy) score to evaluate the translation ac-
curacy. The approach is shown in figure 9.

8.2 What you proposed vs. what you
accomplished

In the project proposal, we have added the English
to Spanish translation and existing works have
been mentioned. Here, we have done all the ex-
periments which are mentioned in proposal in ICL
machine translation techniques. We also added
the few shots prompting and chain of thought in
prompting.

8.3 Dataset

We used the WMT-14 (Bojar et al., 2014) train-
ing dataset, which is widely recognized in previ-
ous machine translation studies. This dataset was
chosen due to its extensive range of sentence struc-
tures and vocabulary, providing a rich resource for
English to Spanish translations across various con-
texts.

Several challenges arose in utilizing this
dataset. Its large size and high average sentence
length presented significant constraints for train-
ing in a low-resource environment. Consequently,
we reduced the dataset to a sample of 500 English-
Spanish sentence pairs. The variability in sentence
contexts further complicated the task, making it
difficult for models to generalize effectively. The
description of dataset is given in Table 1.

In Table 2, we have added the original English
sentence, equivalent original Spanish translated
text, and experimental pre-trained large language
model generated translation by prompting.

Table 1: Dataset Statistics

Statistic Value
Training set size 953,621
Validation set size 3,000
Test set size 3,003
Sample size for testing 500
Average English sentence length 26.25
Average Spanish sentence length 23.452
No. of English Unique words 3004
No. of Spanish Unique words 3544

8.4 Data Pre-processing

The preprocessing steps included:

• Tokenization: Converting text into tokens
suitable for the language model. Tokeniza-
tion is essential because language models op-
erate on numerical representations of text.
This step breaks down sentences into smaller
units (tokens) that the model can understand.
Tokens can be words, subwords, or charac-
ters, depending on the tokenizer used. This
process allows the model to process and learn
from text data more efficiently.

• Padding/Truncation: Ensuring uniform in-
put lengths up to 50 for batch process-
ing. Padding and truncation are necessary
to standardize the input sequences’ lengths.
Padding adds special tokens to shorter se-
quences to match the desired length, while
truncation shortens longer sequences. This
uniformity is crucial for batch processing,
where multiple sequences are processed si-
multaneously. It ensures that all input data
in a batch have the same shape, allowing for
efficient computation and reducing memory
overhead during training and inference.

8.5 Baselines

In our project, we evaluated the In-Context Learn-
ing (ICL) machine translation task across several
new NLP benchmark models, including Mamba
(Gu and Dao, 2023). Mamba has become promi-
nent in the medium-scale parameter range (3-6
billion parameters), demonstrating superior per-
formance over traditional Transformer models
(Vaswani et al., 2017). To understand the ICL ca-
pabilities of various medium-scale language mod-
els, we compared Mamba-2.8B to models like

English Sentence Original Spanish Sentence LLM’s Generated Translation

The sun is shining brightly. El sol esta brillando intensamente. El sol está brillantemente.

Table 2: In Context Learning in Machine translation (English to Spanish)

Bltm-3B, Mistral-7B, Pythia-2.8B, and LLama-
7B. All models were sourced from Huggingface.

In the context of ICL tasks, we employed vari-
ous prompting shots (i.e., 0, 2, 5, 8, 10) to com-
pare the performance of these benchmark models.
Notably, ICL tasks do not require parameter tun-
ing because the models utilize pre-trained param-
eters to generate responses based on the examples
provided in the prompt. This approach leverages
the model’s existing knowledge, enabling it to per-
form tasks without further adjustment of its inter-
nal parameters.

During preprocessing, we applied tokenization
to convert text into tokens that the language mod-
els can process. We also used padding and trunca-
tion to standardize input lengths to a maximum of
50 tokens, ensuring uniformity.

• early stopping= True,

• skip special tokens = True

• max length= input ids.shape[1]+50

The chosen baselines include various large lan-
guage models with different architectures and
sizes. The baselines used in this experiment are
3 different language models (LMs). All the mod-
els were taken from Huggingface. These models
are:

• Mamba-2.8B

• Bltm-3b

• Mistral7B

• Pythia-2.8B

• LLama-7B

The detailed approach and results are written in
the following subsection.

8.6 Our Approach
Our approach involves using different ”shots” or
examples within the prompts to guide the pre-
trained model in translating English sentences into
Spanish. The concept of ”shots” in ICL refers to

the number of example translations provided in the
prompt before asking the model to generate a new
translation. We explore the performance of the
models under various shot conditions:

• Zero-Shot Learning: The model is prompted
to translate sentences without any example
translations provided.

• Few-Shot Learning: The model is provided
with several example translations (typically
between 2 to 10) before translating new sen-
tences.

Pre-Trained Models: We compared five pre-
trained language models (Mamba2.8B, BLTM 3B,
Mistral 7B, Pythia-2.8B and LLama 7B) for our
investigation:

8.7 Prompt Generation

The prompts consist of English sentences paired
with their Spanish translations, followed by a new
English sentence for which the model must gener-
ate the Spanish translation. The English and orig-
inal Spanish translations, we have used WMT-14
datasets. For example, for 10 shots prompting, the
prompt generation module is :

prompt = ”””
Translate the following sentences from English

to Spanish:

1. The dog is running in the garden. El perro
está corriendo en el jardı́n.

2. She is watching a movie. Ella está viendo una
pelı́cula.

3. The children are drawing pictures. Los niños
están dibujando cuadros.

4. He is reading a newspaper. Él está leyendo
un periódico..

5. They are traveling to Spain next month. Ellos
van a viajar a España el próximo mes.

6. He is studying for the exam. Él está estu-
diando para el examen.

7. We are cooking dinner tonight. Nosotros es-
tamos cocinando la cena esta noche.

8. They are playing in the park. Ellos están ju-
gando en el parque.

9. She is going to the store. Ella va a la tienda.

10. The book is on the table. El libro está sobre
la mesa.

Then we asked for another sentence to be trans-
lated into Spanish by pre-trained language models.
Please translate the following sentence into Span-
ish:

The sun is shining brightly. The correct transla-
tion is:”””

Like this process, we have used various shot
prompting in three different models.

8.8 Evaluation

To quantitatively evaluate the performance of the
models, we use the BLEU score (Bilingual Evalu-
ation Understudy), a standard metric for assessing
the quality of machine-translated text compared
to a reference translation. It measures the sim-
ilarity between machine-translated text and ref-
erence translations. The BLEU score is a num-
ber between 0 and 1, with 0 indicating low qual-
ity and 1 indicating high quality. The BLEU
algorithm compares consecutive phrases in the
machine-translated text with the same phrases in
the reference translation and counts the number of
matches. A higher match degree indicates a higher
degree of similarity with the reference translation
and a higher score.

The BLEU score is calculated using the preci-
sion of n-grams in the candidate translation rel-
ative to the reference translations, along with a
brevity penalty to account for short translations.

N-gram Precision First, we calculate the pre-
cision for each n-gram size (typically 1-gram, 2-
gram, 3-gram, and 4-gram):

pn =

∑
C∈Candidates

∑
n-gram∈C Countclip(n-gram)∑

C∈Candidates
∑

n-gram∈C Count(n-gram)
(1)

where:

• Countclip(n-gram) is the clipped count of n-
grams in the candidate translation.

• Count(n-gram) is the total count of n-grams
in the candidate translation.

Clipping means that the count for any n-gram in
the candidate cannot exceed the count in the refer-
ence translations.

Brevity Penalty (BP) The brevity penalty is
used to penalize overly short translations.

BP =

{
1 if c > r

e1−
r
c if c ≤ r

(2)

where:

• c is the length of the candidate translation.

• r is the effective reference length, which
is typically the closest length of the refer-
ence translation(s) to the candidate transla-
tion length.

BLEU Score Finally, the BLEU score combines
the n-gram precision and the brevity penalty:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(3)

where:

• wn is the weight for the n-gram precision
(commonly equal, e.g., wn = 1

N for N -gram
precisions).

• N is the maximum n-gram length considered.

8.9 Implementation Details:
We have completed our implementation in three
steps : prompt generation, LLM’s translation, and
the evaluation of the performance of language
models.

Library: We have used the following tasks for
this library:

• HuggingFace Transformers

• trl

• peft

• transformers

• datasets

• tqdm

• BitsAndBytesConfig

• torch

• pandas

• nltk.translate.bleu score

We have used the existing implementation
of Mamba-2.8B, Mistral-7B, BTLM-3B, Pythia-
2.8B, Llama-7B from huggingFace. The links are
attached here :

• Mamba-2.8B: https://huggingface.
co/state-spaces/mamba-2.8b-hf

• BTLM-3B: https://huggingface.
co/cerebras/btlm-3b-8k-base

• Mistral-7B: https://huggingface.
co/mistralai/Mistral-7B-v0.

• Pythia-2.8B: https://huggingface.
co/EleutherAI/pythia-2.8b

• Llama-7B: https://
huggingface.co/meta-llama/
Llama-2-7b-chat-hf

Code availability: The datasets and codes
are available here: https://github.com/
ron352/In-Context-Learning-ICL-_
MT.git.

Computing Resources: For this study, we used
Google Colab Pro to leverage its enhanced compu-
tational capabilities, which are crucial for exten-
sive training sessions. However, we faced several
challenges inherent to the prolonged use of Co-
lab Pro. The primary issue was the frequent dis-
connection of the runtime during extended train-
ing periods.

To address this, we had to terminate other ac-
tive sessions multiple times and utilize higher-tier
GPUs, such as the T4, A100, and L4 GPUs, to
ensure sufficient computational power and effi-
ciency. Additionally, we implemented JavaScript
code within the browser console to keep the train-
ing session active, preventing it from timing out
and thus ensuring the uninterrupted execution of
our models. We couldn’t run Mamba-7B because
of limited memory.

8.10 Results

The LLama 7B model consistently performs the
best across all prompting strategies, achieving a
BLEU score of 0.9746 for 10-shot, 0.9240 for 5-
shot, and 0.3757 for zero-shot prompting. This
model’s performance is particularly notable in
high-shot scenarios, indicating its robustness in
utilizing provided context. The Mamba 2.8B
model also shows strong performance, especially
in higher-shot prompts. It achieves a BLEU
score of 0.8457 for 10-shot and 0.7416 for 5-shot,
demonstrating its ability to leverage multiple ex-
amples effectively. However, its zero-shot score
of 0.4210 suggests that while it can generalize
well with context, it struggles more without any
prompts.

BTLM 3B shows competitive performance with
a 10-shot BLEU score of 0.8551, slightly higher
than Mamba’s. However, its zero-shot score of
0.2703 indicates significant challenges in translat-
ing without examples, highlighting its dependence
on contextual information for accuracy. Mistral
7B performs similarly to Mamba 2.8B with a 10-
shot BLEU score of 0.8457 but slightly lower in
the 5-shot and zero-shot scenarios. This consis-
tency suggests that Mistral can also effectively
utilize multiple prompts but faces similar zero-
shot translation challenges. Pythia 2.8B exhibits
a consistent yet slightly lower performance across
all prompting strategies compared to Mamba and
Mistral. Its 10-shot BLEU score of 0.8329 and
zero-shot score of 0.4169 indicate a moderate abil-
ity to use context but not as effectively as LLama
or Mamba.

Overall, the LLama 7B model demonstrates su-
perior performance across the board, particularly
excelling in scenarios with more prompts. The
Mamba 2.8B model shows strong performance
with sufficient context but has room for improve-
ment in zero-shot settings. Both BTLM and
Mistral exhibit dependence on contextual exam-
ples for optimal performance, while Pythia consis-
tently underperforms compared to the top models.
These results underscore the importance of prompt
design and contextual information in enhancing
translation quality and model performance.

The model performance is attached in Figure
10.

https://huggingface.co/state-spaces/mamba-2.8b-hf
https://huggingface.co/state-spaces/mamba-2.8b-hf
https://huggingface.co/cerebras/btlm-3b-8k-base
https://huggingface.co/cerebras/btlm-3b-8k-base
https://huggingface.co/mistralai/Mistral-7B-v0.
https://huggingface.co/mistralai/Mistral-7B-v0.
 https://huggingface.co/EleutherAI/pythia-2.8b
 https://huggingface.co/EleutherAI/pythia-2.8b
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://github.com/ron352/In-Context-Learning-ICL-_MT.git
https://github.com/ron352/In-Context-Learning-ICL-_MT.git
https://github.com/ron352/In-Context-Learning-ICL-_MT.git

Table 3: BLEU Scores for Different Models with Various Prompting Strategies

Model 10-shot 8-shot 5-shot 2-shot 0-shot

Mamba 2.8B 0.8457 0.8297 0.7416 0.64696 0.4210
BTLM 3B 0.8551 0.839000 0.7488 0.66433 0.2703
Mistral 7B 0.8457 0.81872 0.7346 0.630476 0.4016
Pythia 2.8B 0.8329 0.81981 0.7168 0.819480 0.4169
LLama 7B 0.974601 0.971324 0.924035 0.759362 0.37568

Figure 10: In context Learning in Translation work using prompting

8.11 Error Analysis

While we have used zero-shot prompting, the
models fail at translating the sentences to Spanish.
When we increase the prompt generation, it im-
proves the result by translating it properly without
the last words. In our prompts, we have used dif-
ferent contextual sentences so that the model can
learn generalizability. The models fail at both se-
mantic and syntactic commonalities in zero-shot
prompting.

Types of Inputs the Baselines Fail The baseline
models exhibit significant challenges with:

• Zero-Shot Prompting: All models fail to
produce accurate translations without any ex-
amples, often retaining the original English
text or producing incomplete translations.

• Contextual Understanding: The models
frequently struggle to maintain the context of
the sentence, leading to translations that are
either too literal or miss the intended mean-
ing.

For instance, the sentence ”The sun is shining
brightly.” yielded the following translations under
different prompting scenarios:

• Original Sentence: ”The sun is shining
brightly.”

• Expected Translation: ”El sol está brillando
intensamente.”

Mamba’s Responses:

• 10-shot: ”El sol está brillando brillante-
mente.”

• 8-shot: ”El sol brilla brillantemente.”

• 5-shot: ”El sol está brillando brillantemente.”

• 2-shot: ”El sol está brillando brillantemente.”

• 0-shot: ”El sol brilla brillantemente.”

BTLM’s Responses:

• 10-shot: ”El sol está brillando.”

• 8-shot: ”El sol está brillando.”

• 5-shot: ”El sol está brillando.”

• 2-shot: ”El sol está brillando fuerte.”

• 0-shot: ”The sun is shining brightly.”

Mistral’s Responses:

• 10-shot: ”El sol está brillando brillante-
mente.”

• 8-shot: ”El sol está brillando brillantemente.”

• 5-shot: ”El sol está brillando brillantemente.”

• 2-shot: ”El sol está brillando brillantemente.”

• 0-shot: ”El sol brilla.”

Pythia’s Responses:

• 10-shot: ”El sol brilla con fuerza.”

• 8-shot: ”El sol brilla con fuerza.”

• 5-shot: ”El sol brilla con brillo.”

• 2-shot: ”El sol brilla con fuerza.”

• 0-shot: ”The sol está brillando.”

Llama’s Responses:

• 10-shot: ”El sol está brillando con fuerza.”

• 8-shot: ”El sol está brillando con fuerza.”

• 5-shot: ”La luz del sol brilla con fuerza.”

• 2-shot: ”La luz del sol brilla con fuerza.”

• 0-shot: ”El sol brilla con fuerza.”

Semantic and Syntactic Commonalities

• Incomplete Translations: Many translations
miss key words or phrases, particularly at the
end of sentences.

• Literal Translations: Some models translate
word-by-word rather than capturing the over-
all meaning, leading to awkward or incorrect
phrases.

• Context Misunderstanding: Models often
fail to maintain the context provided in the
examples, leading to semantically incorrect
translations.

• Inconsistent Usage: Different models show
varying levels of formality and vocabulary
usage, often inconsistent with the provided
context.

Hypotheses and Discussion The models likely
struggle due to:

• Limited Contextual Training: Without suf-
ficient context in the prompts, the models fail
to generalize well.

• Prompt Design: The design and structure of
the prompts significantly impact the model’s
ability to translate effectively. More contex-
tual examples help but also highlight the need
for better prompt engineering.

Chain of Thought Analysis Using the Chain of
Thought (CoT) approach, we observe the models’
progression in handling translation tasks:

• Initially, in zero-shot prompting, the models
often fail to understand the context and pro-
duce incomplete or literal translations. For
instance, Mamba’s response ”El sol brilla
brillantemente” fails to capture the exact
meaning of ”intensamente” in the expected
translation.

• As we increase the number of examples
(shots), the models start to show improve-
ments. For example, in the 10-shot scenario,
Mamba translates the sentence to ”El sol está
brillando brillantemente,” which, while not
perfect, shows better alignment with the con-
text.

• Despite improvements, some issues persist
across models and shot scenarios. The CoT
reveals that models like BTLM and Pythia
struggle with maintaining the correct tense
and formality, evident in their varying trans-
lations for similar prompts.

• By analyzing these chains of thought, we
identify that better contextual understanding
and prompt engineering can help models gen-
eralize translations more effectively, reduc-
ing errors related to semantic and syntactic
inconsistencies.

8.12 Conclusion
In summary, CoT usually improves the perfor-
mance of relatively larger language models than
small models. It sometimes hurts the performance
of smaller scale language models as the reason-
ing power is not well enough in these models. So,
it becomes confused and performs poorly. From

our results, LLama-7B has surpassed the perfor-
mance in all shots prompting except one compared
to other LLMs. When we increased the prompts,
the LLama-7B performed better because it can
do reasoning better than other models. In con-
trast, Mistral-7B should perform alike Llama as
it has the same number of parameters but in real-
ity, it performed comparatively worse than Mamba
2.8B. An interesting aspect can be done by using
downstream of prompting and showing the results
of these models.

9 Mamba Based Model Updater for
M-TGNNs

9.1 Dataset for Temporal Structured Data
Learning

Edge event-based data format is a representation
commonly used for temporal graph data, espe-
cially in the context of tasks like link prediction
in temporal graphs. In this format, each inter-
action or event between nodes is recorded with
a timestamp, capturing the temporal dynamics of
the graph. Table 4 shows a sample event based
temporal graph dataset and Figure 11 is the corre-
sponding temporal graph.

src dst timestamp feature
1 2 t1 f(e1)
1 3 t2 f(e2)
2 4 t3 f(e3)
3 4 t4 f(e4)
1 2 t5 f(e5)
1 5 t6 f(e6)
5 1 t7 f(e7)
6 3 t8 f(e8)
7 6 t9 f(e9)
4 7 t10 f(e10)
2 8 t11 f(e11)
9 10 t12 f(e12)
8 11 t13 f(e13)
12 6 t14 f(e14)
11 12 t15 f(e15)
6 9 t16 f(e16)
10 1 t17 f(e17)
12 9 t18 f(e18)

Table 4: Edge Event Temporal Graph Dataset

For experimental analysis we have used the
Wikipedia dataset introduced in Jodie (Kumar
et al., 2019) for link prediction tasks. It is a mod-

Figure 11: Temporal Graph from Table 4

erately sized temporal benchmark graph database
Wikipedia, consisting of 9,000 nodes and 157,000
edges. Each edge is associated with a timestamp
and 172-dimensional feature.

9.2 Baseline for Temporal Data Learning

As baseline for temporal data learning, we have
chosen TGN (Rossi et al., 2020) which is the
state-of-the-art model for memory based temporal
graph neural network. Details of the baseline are:

• Task: Link Prediction

• Model: TGN

• Framework: Deep Graph Library with Py-
Torch backend

• Memory Aggregator: Last Message

• Memory Updater: LSTM Cell

9.3 Proposed Approach

Memory-based Temporal Graph Neural Networks
(M-TGNN) are an extension of traditional Graph
Neural Networks (GNNs) designed to handle tem-
poral graph data. Temporal graphs are graphs
where edges or node attributes change over time.
M-TGNNs integrate memory mechanisms into
GNN architectures to effectively capture temporal
dynamics in such data.

The key idea behind M-TGNNs is to incorpo-
rate memory modules to store and update informa-
tion about the past states of the graph. This allows
the model to consider not only the current state
of the graph but also its historical evolution, en-
abling better understanding and prediction of tem-
poral graph dynamics.

Figure 12: TGNN Training Procedure

M-TGNNs typically consist of several compo-
nents:

• Memory Mechanisms: Memory modules
store past information, such as node or edge
memory vector, allowing the model to learn
from historical patterns. These memories
are updated over time as new information
becomes available. It is typically a ike
LSTM/GRU based sequential model.

• Message Passing Module: Message Pass-
ing Module generates message from all n-
hop neighbors using node memory and fea-
ture vector from node and edge. Frameworks
like DGL stores these messages in the receiv-
ing nodes mailbox.

• Aggregator: Aggregator combines all the
messages in the mailbox of a node to generate
a single node embedding vector, also known
as node representation.

• Prediction Layers: These layers predict fu-
ture states of the graph based on the learned
representations and historical information.

M-TGNNs find applications in various domains
where temporal graph data is prevalent, such as
social networks, transportation networks, and fi-
nancial markets. They have shown promising re-
sults in tasks like link prediction, node classifica-
tion, and graph-level prediction in dynamic graph
data. In this part of the project we are focusing on
memory module of M-TGNNs for Link-Prediction
as the downward prediction task.

Memory Module Design with Mamba TGNN
processes events chronologically and uses the tem-
poral graph constructed using the events prior to
the current batch as the temporal training graph. If
we consider batch size two for the sample graph
database in Table 4, then the Figure 12 shows the
training graph for the 9th batch. M-TGNNs uses
memory vectors generated until the previous batch
along with training graph messages for root nodes
to estimate probability score for the edges present
in the current batch (edge e17 and e18 in Figure
12). To make the dataset balanced, equal number
of negative edges are sampled from the undirected
negative pair graph sample space as show in the
figure. After the prediction phase, memory vec-
tors of the root nodes are updated using the posi-
tive pair graph constructed from the the events in
the current batch.

Each edge in the positive pair-graph generates
two messages. If et = (u, v, t) is an edge where
u&v are source node and destination nodes and t
is timestamp, then message to node u from node v
is:
mu←v = msgfn(fu, fv, fet , timeEncode(t))

Similarly, message from node u to node v is:
mv←u = msgfn(fv, fu, fet , timeEncode(t))

When we have a large batch size, each node
will have multiple messages. For example, in the
Wikipedia dataset, for a batch size of 8000, some
nodes have more than 650 incoming messages. In
DGL, incoming messages are stored in the mail-
box of the destination node. All of these messages
have time information associated with it and form
a sequence of messages.

Mu = m1(t1),m2(t2) . . .mn(tn)

TGN (Rossi et al., 2020) uses an aggregator to
combine all of these messages to a single vector
(avg/last message/learnable function) and then use
a GRUcell/LSTM passing previous node memory
S
(
u0) as hidden cell state and aggregated message

as input to calculate the next cell state which is
then used as the node’s memory for next batches
until updated. In this study we have replaced this
memory update mechanism with Mamba block in
two configurations.

• Configuration 1: TGN-AGG-MAMBA Re-
place LSTM cell with Mamba block.

• Configuration 2: TGN-MAMBA Replace
Aggregator-LSTM with Mamba block.

For Configuration 1, we have prepared a two
length sequence S

(0)
u AggregatedMessage(u)

and passed it to to mamba block; used the last
output of the mamba block as updated node mem-
ory. For Configuration 2, we have prepended the
message the mailbox of the node with the previ-
ous memory and passed this entire sequence to the
Mamba block.

S
(0)
u m1(t1),m2(t2) . . .mn(tn)

The last vector of the output sequence is then
used as the updated memory. Configuration 1
is expected to be inferior to Configuration 2 in
terms of accuracy as TGN-MAMBA will aggre-
gate the messages considering the temporal depen-
dence among the messages. The purpose of Con-
figuration 1 is to evaluate raw power of Mamba
block with LSTM cell.

9.4 Empirical Analysis for Temporal Data
Learning

Tools We have used DGL (Wang et al., 2019)
with PyTorch kernel for implementation frame-
work and Google colab Pro A100 GPU.

Experimental Results As baseline for eval-
uating temporal graph learning we have used
TGN model with last message aggregator as re-
ducer and LSTM memory updater (TGN-AGG-
MAMBA). We have two variant of the model to
test against the baseline: TGN-AGG-MAMBA
which uses Mamba block in place of LSTM cell as
memory updater and TGN-MAMBA that replaces
both aggregator and LSTM memory updater with
Mamba block.

Average Precision We have recorded average
precision on the Wikipedia Dataset for batch-
size 32, 128, 256, 512, 1024, 2048, 4096, 8192 and
16384. For the base model, as mentioned in the
original paper, we have observed gradual fall in
the average precision measure with the increase
of the batch size. The best average precision was
achieved for batch size 32.

We could not run the MAMBA models for batch
size 32, 128, 256 and 512 because of numerical
instability. For batch size 1024 and larger, from
Figure 13, we can see that, TGN-AGG-MAMBA
and is also no exception here; in fact it performed
slightly worse than base model for batch size 4096
and smaller. For batch size 8192 and 16384, TGN-
AGG-MAMBA outperformed TGN-AGG-LSTM.
But when we replaced last message aggregator
and LSTM memory updater with Mamba block on
raw messages from DGL mailbox, average pre-
cision was significantly stable and outperformed
other two model. For larger batch sizes, this per-
formance improvement is significant.

Training Time For TGNNs, training time is
mainly dominated by sampling time and loading
time. so, in stead of focusing on the total time re-
quired for convergence, we have focused on per
time. All three models exhibited a similar conver-
gence trend; larger batch training required more
epochs to converge. We have recorded epoch
times per epoch to evaluate the computational bur-
den introduced by my Mamba block.

Per epoch time for different batch sizes are
shown in Figure 14. As expected, both configura-
tions with Mamba takes a slightly more time com-
pared to LSTM block, But the interesting point
is, TGN-MAMBA considers perform aggregation
respecting sequential intra-batch temporal depen-
dency without significant overhead which resulted
in stable average precision as shown in Figure 13.

9.5 Conclusion

Training Mamba from scratch is challenging and
often subject to numerical instability. Architec-
turally, our experiments do not conclusively show
that the Mamba block is more capable than LSTM.
However, its ability to handle sequential depen-
dencies in parallel computation makes it suitable
for applications where we would not typically con-
sider using an LSTM cell. Therefore, from the
perspective of learning node representations and
handling temporal data, we believe Mamba has

Batch Size

A
ve

ra
ge

 P
re

si
ci

si
on

0.5

0.6

0.7

0.8

0.9

1.0

32 128 256 512 1024 2048 4096 8192 16384

TGN-AGG-LSTM TGN-AGG-MAMBA TGN-MAMBA

Figure 13: Average Precision

Batch Size

E
po

ch
 ti

m
e

(s
ec

on
ds

)

0

20

40

60

80

32 128 256 512 1024 2048 4096 8192 16384

TGN-AGG-LSTM TGN-AGG-MAMBA TGN-MAMBA

Figure 14: Epoch Time

promising potential.

Code Availability The code is available
at https://github.com/cseduashraful/TGN-
Mamba.git

10 Bias and Fairness Analysis

10.1 What you proposed vs. what you
accomplished

In the project proposal, various evaluation met-
rics for measuring gender bias in language model
from existing works have been mentioned and we
proposed to evaluate Mamba for fairness using
the metrics. We have used the word analogy test
(Bolukbasi et al., 2016) metric to measure gender
bias of Mamba language model (1.4b parameters)
and compared the results with that of word2vec
(Mikolov et al., 2013) since the metric was devel-
oped to measure bias in word embeddings.

10.2 Baselines

The following baselines are used to present a com-
parative performance of model regarding gender
bias:

• Mamba-1.4b

• Gemma-2b

• zephyr-3b

• word2vec

10.3 Approach

10.3.1 Overview
To assess gender bias in word embeddings, we
extract the last hidden layer output of the models,
excluding word2vec which already contains the
embeddings. Following the methodology outlined
in (Bolukbasi et al., 2016), we establish a gender
subspace g using a set of Definitional Word
Pairs, comprising highly gendered words. Then,
we evaluate a set of Professional Words, which
are gender-neutral, by calculating their cosine
similarity to the gender subspace g. This process
illuminates the association of non-gendered words
with gender, thereby highlighting any lingering
gender bias in the embeddings. Below lists the
definitional and professional words selected for
bias evaluation in the Mamba model.

Definitional
Word Pairs

woman-man, girl-boy, she-he,
mother-father, daughter-son,
gal-guy, female-male, her-his,
mary-john

Professional
Words

nurse teacher writer engi-
neer scientist manager driver
banker musician artist chef
filmmaker judge comedian in-
ventor worker soldier journal-
ist student athlete actor gov-
ernor farmer person lawyer
adventurer aide ambassador
analyst astronaut astronomer
biologist

10.3.2 Gender sub-space g
Discerning the gender subspace is the first step.
Here, we analyzed the difference vectors (em-
beddings) of definitional word pairs (e.g, man-
woman) and calculated their principal components
(PCs). We discovered a dominant direction that
accounts for most of the variation in these vec-
tors. We designate the leading PC, represented
by the unit vector g as capturing the gender sub-
space. Further elaboration can be found in the
codebase, including visualization of the principal
components.

10.3.3 Measure Direct Bias
To quantify direct bias, we utilize the set of
gender-neutral professional words, denoted as P ,
along with the gender direction determined previ-
ously, represented by g. We define the direct gen-
der bias of an embedding (of a professional word)
as follows:

bias score =
1

|P |
∑
w∈P

|cos(w⃗|g)|

This metric allows us to assess the gender bias of
specific professional words. Initially, we present
the gender bias of definitional words to assess their
alignment towards male and female genders. Sub-
sequently, we examine the gender bias of the pro-
fessional words. The results are depicted in Figure
15 and Figure 16 respectively.

Further analyses were conducted on the gender
bias present in the word embeddings utilized by
the models (i.e., the embeddings employed as in-
put to the model). These analyses aimed to il-
lustrate the alterations in embeddings throughout
training and their corresponding shifts in gender

https://github.com/cseduashraful/TGN-Mamba.git
https://github.com/cseduashraful/TGN-Mamba.git

wo
m

an
da

ug
ht

er
m

ot
he

r
gi

rl
sh

e
ga

l
fe

m
al

e
he

r
he

rs
el

f
m

ar
y

qu
ee

n
wi

fe
m

ad
am m
an so
n

fa
th

er bo
y

gu
y

m
al

e hi
s

hi
m

se
lf

jo
hn

ki
ng

hu
sb

an
d sir

Words

30

20

10

0

10

20

30

40

Bi
as

 S
co

re

Zephyr-3b-definitional

Figure 15: Gender bias of Definitional words. Female gender bias is represented as a positive number (white bar)
and male gender bias is represented as a negative number (black bar).

bias. However, due to space constraint, these ad-
ditional analyses are not presented here.

10.4 Dataset/Error Analysis

As we utilized word embeddings (for the
word2vec model) or the last hidden layer repre-
sentation of input tokens to gauge gender bias us-
ing the outlined procedure, there was no need for
an explicit dataset in this application. Moreover,
no explicit error analysis was necessary here, as
there isn’t a definitive correct output. However,
the desired outcome is for gender-neutral occupa-
tional words not to exhibit stronger associations
with gender space, as observed in the instances
discussed. Further analysis on this point follows
below.

10.5 Conclusion/Analysis

Word2vec illustrates how neutral words maintain
gender information within their embeddings and
exhibit bias towards particular genders for specific

occupational terms. These biases fall into the
category of stereotypical bias, which permeates
societal norms and influences decision-making
processes. However, the presence of gender bias
in other language models (such as mamba-1.4b,
gemma-2b, zephyr-3b) doesn’t necessarily imply
stereotypical bias; nevertheless, they still demon-
strate bias towards certain genders (prevalently
male), as evidenced by the bias scores for occupa-
tional terms. This finding underscores the need for
more robust and pragmatic evaluation metrics to
assess gender bias in word representations within
LLMs. Additionally, gender assessment in various
downstream tasks can provide insight into the
diverse ramifications of gender bias. Furthermore,
it’s imperative to analyze and address other forms
of bias (e.g., race, age, ethnicity), and gender bias
should not be confined to binary genders.

Code availablity Gender bias evaluation code
is publicly available at https://github.

https://github.com/sz-ishita/mamba-gender-bias

nu
rs

e
te

ac
he

r
wr

ite
r

en
gi

ne
er

sc
ie

nt
ist

m
an

ag
er

dr
iv

er
ba

nk
er

m
us

ici
an

ar
tis

t
ch

ef
fil

m
m

ak
er

ju
dg

e
co

m
ed

ia
n

in
ve

nt
or

wo
rk

er
so

ld
ie

r
jo

ur
na

lis
t

st
ud

en
t

at
hl

et
e

ac
to

r
go

ve
rn

or
fa

rm
er

pe
rs

on
la

wy
er

ad
ve

nt
ur

er
ai

de
am

ba
ss

ad
or

an
al

ys
t

as
tro

na
ut

as
tro

no
m

er
bi

ol
og

ist

Words

30

20

10

0

10

20

Bi
as

 S
co

re

Zephyr-3b-professional

Figure 16: Gender bias of Professional words. Female gender bias is represented as a positive number (white bar)
and male gender bias is represented as a negative number (black bar).

com/sz-ishita/mamba-gender-bias.

11 Evaluating Fairness of Pre-trained
Mamba Models using Shapley
Attribution

11.1 Overview

The experiment investigates the sensitivity of 11
language models (LMs) to demographic attributes
by analyzing their responses to different profile
statements. A dataset comprising 120 statements
(covering general positive/negative qualities, aca-
demic/career successes/failures, and involvement
in/victim of crime) and 189 profiles (combina-
tions of sex, sexuality, age, and race) was created.
Each model’s sensitivity to these attributes was
assessed by computing the cosine similarity be-
tween profile and statement embeddings, followed

by SHAP (SHapley Additive exPlanations) attri-
bution analysis to quantify the influence of each
attribute. The results, spanning 11 LMs, revealed
varying degrees of sensitivity to attributes such as
sex, age, race, and sexuality, highlighting the nu-
anced biases inherent in these models. Results
show existing pre-trained Mamba models show
lower bias than transformer models. The code of
the project can be found in https://github.
com/Saad-Mahmud/CS685.

11.2 Dataset
The dataset consists of 120 statements and 189
profiles. The statements include general positive
and negative statements, academic and career suc-
cesses and failures, and involvement in or being a
victim of crime. Examples of statements are:

• This person is talented.

https://github.com/sz-ishita/mamba-gender-bias
https://github.com/sz-ishita/mamba-gender-bias
https://github.com/sz-ishita/mamba-gender-bias
https://github.com/sz-ishita/mamba-gender-bias
https://github.com/sz-ishita/mamba-gender-bias
https://github.com/Saad-Mahmud/CS685
https://github.com/Saad-Mahmud/CS685

• This person is dishonest.

• This person graduated with honors.

• This person was involved in a fraud scheme.

Profiles are created using combinations of at-
tributes such as sex, sexuality, age, and race. Ex-
amples of profiles are:

• He is a young Asian straight male.

• She is an old African American bisexual fe-
male.

The data preprocessing involved generating pro-
files by combining attributes such as sex, sexual-
ity, age, and race. The statements were generated
using Chat-GPT4o.

11.3 Baselines

The baselines used in this experiment are 11 dif-
ferent language models (LMs). These models are:

• Mamba1.4B

• Phi1.5B

• Gemma2B

• RGemma2B

• Mamba2.8B

• Zephyr3B

• Mamba7B

• Llama7B

• Llama8B

• Mistral7B

• Gemma7B

All the models were taken from Huggingface.

11.4 Our approach

The approach involves calculating the cosine sim-
ilarity of the final layer embeddings between pro-
files and statements. Let ep and es denote the em-
beddings of a profile and a statement, respectively.
The cosine similarity is given by:

cosine similarity(ep, es) =
ep · es

∥ep∥∥es∥
(4)

SHAP (SHapley Additive exPlanations) values
were then used to analyze the contribution of each
attribute to the cosine similarity score. The SHAP
value for a feature i is computed as follows:

ϕi =
∑

S⊆N\{i}

CS [f(S ∪ {i})− f(S)] (5)

CS =
|S|!(|N | − |S| − 1)!

|N |!
(6)

where N is the set of all features, S is a sub-
set of features, and f is the prediction function.
The mean absolute SHAP values for each attribute
were calculated to determine the sensitivity of
each model. Let ϕi,j,k represent the SHAP value
for attribute i in profile j, and statement k and n
be the total number of profiles and m be the total
number of statements. The mean absolute SHAP
value for attribute i is given by:

|ϕi| =
1

n

n∑
j=1

(
1

m

m∑
k=1

|ϕi,j,k|) (7)

11.5 Results and Analysis

Figure 17 shows the sensitivity of various LMs
to demographic attributes such as sex, age, race,
and sexuality. The analysis reveals that Mamba-
based models (Mamba1.4B, Mamba2.8B, and
Mamba7B) generally show relatively low sensitiv-
ity across all attributes, indicating lower bias com-
pared to other models. In particular, Mamba2.8B
demonstrates the lowest sensitivity in most at-
tributes, suggesting it handles demographic fair-
ness better. Conversely, models like Zephyr3B and
Gemma7B exhibit higher sensitivity, especially in
sex and race attributes, indicating a higher level
of bias. These results emphasize that existing
pre-trained Mamba models do not pose additional
safety issues and are relatively safe to use.

12 Contributions of group members

• Saaduddin Mahmud: Sections 1−4 and Sec-
tions 5, 6,&11.

• Md Ashraful Islam: Sections 1 − 4 and Sec-
tion 9.

• Sabrina Zaman Ishita: Sections 1−4 and Sec-
tions 10, 11.

• Amit Sarker: Sections 1− 4 and Section 7.

Mam
ba

1.4
B

Ph
i1.

5B

Gem
ma2

B

RGem
ma2

B

Mam
ba

2.8
B

Zep
hy

r3B

Mam
ba

7B

Lla
ma7

B

Lla
ma8

B

Mistr
al7

B

Gem
ma7

B

Models

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Sh
ap

le
y

Se
ns

iti
vi

ty
Sensitivity of LLMs to Different Attributes

Sex
Age
Race
Sexuality

Figure 17: Sensitivity of LMs to Different Attributes

• Sarmistha Sarna Gomasta: Sections 1−4 and
Section 8.

13 Conclusion

Our experiments provide a comprehensive eval-
uation of Mamba models, highlighting their
strengths and weaknesses across various tasks.
Mamba models show promise in specific areas
such as complex arithmetic and demographic
fairness. However, there are clear areas for
improvement, particularly in out-of-distribution
(OOD) performance and simpler arithmetic tasks.
In tasks involving in-context learning (ICL) and
Chain-of-Thought (CoT) prompting, Mamba
models did not exhibit a definitive advantage
or disadvantage compared to transformers. The
smaller parameter sizes of the models might not be
sufficient to fully leverage CoT properties, leading
to fluctuating performance. Additionally, the
differences in training datasets for the pre-trained
models could contribute to these inconsistencies,
indicating a potential direction for in-depth future
exploration.

In several experiments, such as those involving
M-TGNNs and CoT fine-tuning, Mamba did
not conclusively outperform competing models.
However, Mamba models still offer the benefit of

faster inference, making them potentially more
favorable in scenarios where speed is crucial.
This suggests that while Mamba models may
not always lead in performance, their efficiency
in inference could make them advantageous in
specific applications.

Overall, while Mamba models demonstrate
considerable promise in certain areas, ongoing re-
search and development are necessary to address
their limitations in OOD performance and enhance
their capabilities in simpler arithmetic tasks. Fur-
ther, we would suggest the community to train
larger Mamba models as ICL and CoT properties
might not be apparent in smaller models.

14 AI Disclosure

• Did you use any AI assistance to complete
this proposal? If so, please also specify what
AI you used.

– Yes, we have used ChatGPT-4.

If you answered yes to the above question, please
complete the following as well:

• If you used a large language model to assist
you, please paste *all* of the prompts that
you used below. Add a separate bullet for

each prompt, and specify which part of the
proposal is associated with which prompt.

– We have used prompts like write the for-
mula of BLEU score, how to do prompt
generation in ICL techniques.

– Write a python code to read this text
file, parse the questions, calculate the
correct answer from the questions, parse
the model response. (Section 7)

– We got the following error: for i, line in
range(0, len(lines)): TypeError: cannot
unpack non-iterable int object. Describe
the reasoning. (Section 7)

– Describe the operations of strip()
method in python. (Section 7)

– How to use regex in python? (Section 7)
– Here is the data, write a python code

to generate a graph [graph type]. (Sec-
tion 7

– The code stopped working for this er-
ror: AttributeError: module ’back-
end interagg’ has no attribute ’Figure-
Canvas’. Did you mean: ’FigureCan-
vasAgg’? How to fix this? (Section 7)

– rects1 = ax.bar(x - width,
no demos, width, label=’No Demos’,
color=’#8ecae6’) rects2 = ax.bar(x, de-
mos true label, width, label=’Demos w/
True Label’, color=’#fb8500’) rects3 =
ax.bar(x + width, demos random label,
width, label=’Demos w/ Random La-
bel’, color=’#023047’)
———————————–
If we want to draw another bar, how do
I change it? (Section 7)

– How to change the gap between bars in
this code? (Section 7)

– Here is a graph that describes the [exper-
iment details]. Please write a summary
of the main findings for this graph. (Sec-
tion 7)

– Here are the examples of the problems
the models failed to answer [examples].
Analyze which types of problems are
the most difficult for each model. (Sec-
tion 7)

– Paraphrase the text and formalize it:
”....” (Section 10)

• Free response: For each section or para-
graph for which you used assistance, describe

your overall experience with the AI. How
helpful was it? Did it just directly give you
a good output, or did you have to edit it? Was
its output ever obviously wrong or irrelevant?
Did you use it to generate new text, check
your own ideas, or rewrite text?

– The AI was helpful in description but it
needed lots of fact checking and modifi-
cation.

– The AI was helpful in paraphrasing and
formalizing some texts (that were writ-
ten as dumping text in the report at
the first place). But in some cases, it
changed the meaning of some sentences
that needed manual correction.

• Summarize the conclusions of each section:
*dump of each section’s conclusions. (Sec-
tion 13)

• give me a brief literature review of topic
section name with citations. (Section 4)

• Summarize the numeric results in a mat-
plotlib bar graph. (Section 5, 6, 11)

• given experiment description write an
overview. (Section 5, 6, 11)

• given written details of an experiment write
math expression for that. (Section 5, 6, 11)

References
Blodgett, S. L., Barocas, S., Daumé III, H., and Wallach, H.

(2020). Language (technology) is power: A critical survey
of” bias” in nlp. arXiv preprint arXiv:2005.14050.

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn,
P., Leveling, J., Monz, C., Pecina, P., Post, M., Saint-
Amand, H., Soricut, R., Specia, L., and Tamchyna, A. s.
(2014). Findings of the 2014 workshop on statistical ma-
chine translation. In Proceedings of the Ninth Workshop
on Statistical Machine Translation, pages 12–58, Bal-
timore, Maryland, USA. Association for Computational
Linguistics.

Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., and
Kalai, A. T. (2016). Man is to computer programmer as
woman is to homemaker? debiasing word embeddings.
arXiv preprint arXiv:1607.06520.

Brown, T. B. et al. (2020). Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Caliskan, A., Bryson, J. J., and Narayanan, A. (2017). Se-
mantics derived automatically from language corpora con-
tain human-like biases. Science, 356(6334):183–186.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. (2023). Palm: Scaling language mod-
eling with pathways. Journal of Machine Learning Re-
search, 24(240):1–113.

Gallegos, I. O., Rossi, R. A., Barrow, J., Tanjim, M. M., Kim,
S., Dernoncourt, F., Yu, T., Zhang, R., and Ahmed, N. K.
(2023). Bias and fairness in large language models: A
survey. arXiv preprint arXiv:2309.00770.

Ghorbani, A. and Zou, J. (2019). Interpretation and fairness:
A unified framework for evaluating bias in machine learn-
ing models. arXiv preprint arXiv:1905.12888.

Grazzi, R., Siems, J., Schrodi, S., Brox, T., and Hutter, F.
(2024). Is mamba capable of in-context learning? arXiv
preprint arXiv:2402.03170.

Gu, A. and Dao, T. (2023). Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752.

Gu, A., Goel, K., and Ré, C. (2021). Efficiently model-
ing long sequences with structured state spaces. arXiv
preprint arXiv:2111.00396.

Guo, W. and Caliskan, A. (2021). Detecting emergent inter-
sectional biases: Contextualized word embeddings con-
tain a distribution of human-like biases. In Proceedings of
the 2021 AAAI/ACM Conference on AI, Ethics, and Soci-
ety, pages 122–133.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.

Hu, E. J. et al. (2021). Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685.

Jelassi, S., d’Ascoli, S., Domingo-Enrich, C., Wu, Y., Li, Y.,
and Charton, F. (2023). Length generalization in arith-
metic transformers. arXiv preprint arXiv:2306.15400.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. (2024). Mixtral of experts. arXiv
preprint arXiv:2401.04088.

Kim, S., Joo, S. J., Kim, D., Jang, J., Ye, S., Shin, J., and
Seo, M. (2023). The cot collection: Improving zero-shot
and few-shot learning of language models via chain-of-
thought fine-tuning. ArXiv, abs/2305.14045.

Kumar, S., Zhang, X., and Leskovec, J. (2019). Predicting
dynamic embedding trajectory in temporal interaction net-
works. In Proceedings of the 25th ACM SIGKDD interna-
tional conference on Knowledge discovery and data min-
ing. ACM.

Kurita, K., Vyas, N., Pareek, A., Black, A. W., and Tsvetkov,
Y. (2019). Measuring bias in contextualized word repre-
sentations. arXiv preprint arXiv:1906.07337.

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks
for images, speech, and time series. The handbook of
brain theory and neural networks, 3361(10):1995.

Li, Y., Du, M., Song, R., Wang, X., and Wang, Y. (2023).
A survey on fairness in large language models. arXiv
preprint arXiv:2308.10149.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar,
A., et al. (2022). Holistic evaluation of language models.
arXiv preprint arXiv:2211.09110.

Matthews, A., Grasso, I., Mahoney, C., Chen, Y., Wali, E.,
Middleton, T., Njie, M., and Matthews, J. (2021). Gen-
der bias in natural language processing across human lan-
guages. In Proceedings of the First Workshop on Trust-
worthy Natural Language Processing, pages 45–54.

May, C., Wang, A., Bordia, S., Bowman, S. R., and Rudinger,
R. (2019). On measuring social biases in sentence en-
coders. arXiv preprint arXiv:1903.10561.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Ef-
ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.

Nadeem, M., Bethke, A., and Reddy, S. (2020). Stereoset:
Measuring stereotypical bias in pretrained language mod-
els. arXiv preprint arXiv:2004.09456.

Park, J., Park, J., Xiong, Z., Lee, N., Cho, J., Oymak, S., Lee,
K., and Papailiopoulos, D. (2024). Can mamba learn how
to learn? a comparative study on in-context learning tasks.
arXiv preprint arXiv:2402.04248.

Pineda, F. J. (1987). Generalization of back-propagation
to recurrent neural networks. Physical review letters,
59(19):2229.

Robinson, N. R., Ogayo, P., Mortensen, D. R., and Neubig,
G. (2023). Chatgpt mt: Competitive for high-(but not low-
) resource languages. arXiv preprint arXiv:2309.07423.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti,
F., and Bronstein, M. (2020). Temporal graph networks
for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637.

Silva, A., Tambwekar, P., and Gombolay, M. (2021). To-
wards a comprehensive understanding and accurate evalu-
ation of societal biases in pre-trained transformers. In Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2383–2389.

Talat, Z., Névéol, A., Biderman, S., Clinciu, M., Dey, M.,
Longpre, S., Luccioni, S., Masoud, M., Mitchell, M.,
Radev, D., Sharma, S., Subramonian, A., Tae, J., Tan, S.,
Tunuguntla, D., and Van Der Wal, O. (2022). You reap
what you sow: On the challenges of bias evaluation un-
der multilingual settings. In Proceedings of BigScience
Episode #5 – Workshop on Challenges & Perspectives
in Creating Large Language Models, pages 26–41, vir-
tual+Dublin. Association for Computational Linguistics.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A.,
Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhos-
ale, S., et al. (2023). Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017).
Attention is all you need. Advances in neural information
processing systems, 30.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,
Zhou, J., Ma, C., Yu, L., Gai, Y., et al. (2019). Deep graph
library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315.

Wang, X., Lyu, D., Li, M., Xia, Y., Yang, Q., Wang, X.,
Wang, X., Cui, P., Yang, Y., Sun, B., et al. (2021). Apan:
Asynchronous propagation attention network for real-time
temporal graph embedding. In Proceedings of the 2021
international conference on management of data, pages
2628–2638.

Webster, K., Wang, X., Tenney, I., Beutel, A., Pitler, E.,
Pavlick, E., Chen, J., Chi, E., and Petrov, S. (2020). Mea-
suring and reducing gendered correlations in pre-trained
models. arXiv preprint arXiv:2010.06032.

Wei, J. et al. (2022). Chain of thought prompting elic-
its reasoning in large language models. arXiv preprint
arXiv:2201.11903.

Zelikman, E., Wu, J., and Goodman, N. (2023). Star:
Bootstrapping reasoning with rationales. arXiv preprint
arXiv:2305.14045.

Zhang, M. and Toral, A. (2019). The effect of transla-
tionese in machine translation test sets. arXiv preprint
arXiv:1906.08069.

Zhao, J., Wang, T., Yatskar, M., Cotterell, R., Ordonez, V.,
and Chang, K.-W. (2019). Gender bias in contextualized
word embeddings. arXiv preprint arXiv:1904.03310.

Zhong, Y., Sheng, G., Qin, T., Wang, M., Gan, Q., and Wu, C.
(2023). Gnnflow: A distributed framework for continuous
temporal gnn learning on dynamic graphs. arXiv preprint
arXiv:2311.17410.

Zhou, H., Zheng, D., Nisa, I., Ioannidis, V., Song, X., and
Karypis, G. (2022). Tgl: A general framework for tem-
poral gnn training on billion-scale graphs. arXiv preprint
arXiv:2203.14883.

Zhou, H., Zheng, D., Song, X., Karypis, G., and Prasanna,
V. (2023). Disttgl: Distributed memory-based temporal
graph neural network training. In Proceedings of the In-
ternational Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12.

