
Occlusion-aware Module for 2D Object Detection for Autonomous Driving

Alauddeen Shaikh
alauddeensha@umass.edu

Amit Sarker
asarker@umass.edu

Roshini Pulishetty
rpulishetty@umass.edu

Abstract

Accurate object detection is critical for safe autonomous
driving, yet challenges like partial occlusions, false pos-
itives, and misclassifications hinder existing frameworks’
performance. We propose a two-stage object detector that
enhances YOLOv5m with ResNet-18 secondary classifier
and further, show that overlap with initial predictions (IoU)
and aspect ratios serve as important information for pre-
dicting occluded parts. The secondary classifier refines
YOLOv5m’s predictions by reducing false detections, while
the occlusion-aware module improves the localization of
partially occluded objects. Evaluated on a vehicle dataset
derived from MS COCO, our model outperforms YOLOv5
baselines, achieving higher mean Average Precision (mAP)
and Average Recall (AR) across all vehicle categories, es-
pecially for small and medium-sized objects.

1. Introduction

Accurate object detection is crucial for the safety and relia-
bility of autonomous driving systems and advanced driver-
assistance systems (ADAS) [13]. This involves accurately
identifying and locating objects in an image or video. One
of the primary challenges of object detection is occlusion,
where an object is partially visible in the frame due to an-
other object blocking its view. Partial occlusions lead to
missed detections or inaccurate localizations. This degrades
the performance of critical downstream tasks, such as object
tracking and path planning, leading to serious consequences
of road accidents and risky robot moves. Additionally, the
false positive rate of incorrectly identifying an object is too
high in the existing detection frameworks. Hence, this study
aims to enhance the robustness of object detectors to partial
occlusions in autonomous driving scenarios.

Problem Statement. Given an RGB image I ∈
RH×W×3, object detection aims to regress the bounding
box of each object of interest B = (xcenter, ycenter, w, h)
in the image I and classify them into respective object
classes, along with assigning a confidence score to each de-
tection. The main goals of this project are twofold: (1) to
produce accurate localizations of objects during occlusions,

predicting the complete bounding box even when the ob-
ject is partially visible in the scene, and (2) to reduce false
positives and misclassifications in the detection of vehicles.

We address this problem by developing a two-stage de-
tection pipeline that integrates a secondary classifier into
the YOLO (You Only Look Once) [9]. We chose the
YOLOv5m model as it is a one-stage detector with a real-
time inference system while performing on par with two-
stage detectors in accuracy. For this, we design and imple-
ment a secondary classification stage using a ResNet-18 ar-
chitecture, which validates and refines the initial detections
made by YOLOv5m.

When a vehicle is partially obscured, the algorithm must
compensate for the missing information for accurate detec-
tion. This requires a multi-faceted approach that can effec-
tively adjust bounding boxes to account for occlusions and
validate detections to reduce false positives. We hypothe-
size that by integrating a secondary classifier to refine detec-
tions and implementing post-processing enhancements for
occluded bounding boxes, we can significantly improve the
detection performance of vehicles in challenging scenarios.

We started with investigating how YOLOv5m performs
in occlusion scenarios after fine-tuning with the vehicle
COCO dataset [8], analyzing the gaps where it produces
false positives and the impact of occlusions. The main con-
tributions of this work are:
1. We propose a two-stage detection pipeline that integrates

a ResNet-18 secondary classifier into the YOLOv5m
framework, which refines detection predictions and re-
duces false positives and misclassifications.

2. We implement an occlusion-aware bounding box en-
hancement method that scales occluded bounding boxes
based on IoU and proximity gaps, improving the local-
ization accuracy of partially occluded objects without re-
training the model.

3. We demonstrate that our model achieves better de-
tection accuracy while maintaining computational effi-
ciency across the YOLOv5 family.

2. Related work
Recent advancements in 2D object tracking have signif-
icantly enhanced the performance of tracking on vehi-

1



cles and pedestrians. Transformer-based architectures,
such as SwinTrack [7], tremendously improved the perfor-
mance by leveraging hierarchical feature representations.
While there are several frameworks developed to tackle oc-
cluded objects, like TransMOT [3] utilizes spatial-temporal
graph transformers to effectively model object relationships
across frames, FairMOT [14] jointly optimizes object detec-
tion and re-identification into a unified network and Byte-
Track [15] which recovers the high-score and low-score de-
tections using different association metrics, there is still a
scope of improvement.

R-CNN family of models [5] have revolutionized the
field of object detection using region proposals and con-
volutional neural networks. These object detectors employ
two stages of detection - Region Proposal Network (RPN)
proposes candidate object bounding boxes, and the second
stage extracts features from each proposal and determines
the bounding box and class it belongs to. As they employ
selective search to propose regions and pass each of them
through CNNs, which is computationally expensive, it can
not be applied in object tracking which requires fast infer-
ence and a complex training pipeline. Later, there were vari-
ants of R-CNNs, such as fast R-CNNs [4], faster R-CNNs
[10], and fastest R-CNNs. Fast R-CNNs [4] builds on the
limitations of R-CNNs by optimizing region proposals, by
running CNNs and performing RoI only once instead of
running it several times. However, even after 20x speed
improvement during inference time over R-CNNs, they did
not achieve real-time inference due to heavy dependency on
region proposal generation.

Another variant of R-CNN, Cascade R-CNNs [2] uses a
multi-stage framework to localize, allowing it to refine the
bounding box progressively over the stages. This allows the
network to accurately detect even in the presence of major
occlusions and is frequently used in high-accuracy applica-
tions in autonomous driving and surveillance. However, this
can not be used in real-time tracking of video sequences, as
this network does not infer in real-time and is iterative. Built
on R-CNNs, Sparse R-CNNs [12] handle occlusions with a
query-based approach, where “object queries” directly in-
teract with feature maps allowing it to focus on localized
features even when occluded. It is shown that it works well
in dense and cluttered scenes, and is deployed in 3D ob-
ject tracking of SRCN3D [11]. However, it leverages 3D
surround view of camera data for detection, while our re-
quirement is for the module to work with a single image of
each scene.

With a similar aim of localization, TridentNet [6] uses
multiple parallel branches of different receptive fields so as
to capture objects of different sizes. Though it has not been
studied extensively, this multi-branch design could poten-
tially assist the model in handling occlusions by merging
information from different receptive fields. To make the

lighter networks for object localization, CenterNet [16] is
a key point-based approach to detect the key points at the
center of the bounding box. While this network could lo-
calize objects in real-time, it can potentially produce wrong
results when the whole side of an object is missing, that is
in major occlusions, since it treats each object as a point.

YOLO (You Only Look Once) [9] is the single object
detection module and one of the most efficient approaches
that applies a single-stage framework for fast detection. Due
to significant improvements in feature extraction and ob-
ject localization, they are integrated with many other frame-
works where localization is an auxiliary task. While being
rapid for real-time tracking, they overcome occlusions as
well to some extent. However, they can not tackle major
occlusions or when the object has been cut from the image
on one side.

3. Method

With a goal to improve accuracy and reduce false positives
in object recognition tasks, we developed a two-stage detec-
tion pipeline that integrates a secondary classifier (ResNet-
18) into the YOLOv5m framework. This approach refines
the predictions generated by the primary YOLOv5m model,
thereby enhancing overall detection accuracy. The pipeline
involves designing and implementing the primary detec-
tion model, preparing a custom dataset for the secondary
classifier, designing and training the secondary classifier it-
self, and integrating this classifier into YOLO’s detection
pipeline. We used the vehicle coco dataset [8] to train the
YOLOv5m model and prepared a dataset for the secondary
classifier. The model architecture is shown in 1 1.

3.1. Primary Detection Model

The initial stage of our detection pipeline utilizes the
YOLOv5m model. It processes input images through a sim-
ple yet powerful convolutional neural network architecture
to predict bounding boxes, class labels, and the respective
confidence scores in a single detection. The pre-trained
model is later fine-tuned to focus on four vehicle categories
pertinent to our task: car, bus, motorcycle, and truck. De-
spite high performance, we observed that YOLOv5m occa-
sionally produced false positives, misclassified non-vehicle
regions as vehicles, and also detected the wrong class. To
mitigate this issue, we introduced a secondary classification
stage to validate and refine the model’s predictions.

3.2. Dataset Preparation for Secondary Classifier

The efficacy of the secondary classifier depends on a well-
prepared dataset that accurately represents the types of de-
tections produced by YOLOv5m. For this, we constructed a

1YOLO v5 in this image is taken from [1]

2



Figure 1. Overview of Object Detection Architecture

custom dataset to capture both true positives and false pos-
itives generated by the YOLOv5m model. Initially, we per-
formed inference using YOLOv5m on the training images
of the COCO vehicles data [8], which contained ground
truth annotations for vehicles. We recorded the model’s de-
tections including predicted bounding boxes, class labels,
and confidence scores for each image. For every detection,
we extracted the corresponding region of interest (ROI)
from the original image using the predicted bounding box
coordinates. These ROIs were then resized to a uniform di-
mension of 224×224 pixels to match the input size required
by the secondary classifier.

To label the detections accurately, we calculated the In-
tersection over Union (IoU) between each predicted bound-
ing box and the ground truth bounding boxes. Detec-
tions with an IoU greater than 0.5 with a ground-truth box
were labeled as positive samples, representing true posi-
tives. Conversely, detections with an IoU of 0.5 or less
were labeled as negative samples, representing false posi-
tives. Thus, the resulting dataset consists of cropped ROIs
organized into two classes: positive and negative. We used
this dataset for training the secondary classifier to effec-
tively distinguish between correct and incorrect detections
produced by YOLOv5m.

3.3. Secondary Classifier Design and Training

The secondary classifier was designed to validate
YOLOv5m’s detections by filtering out false positives,
thereby improving the overall precision of the detection
pipeline. We selected the ResNet-18 architecture for its

balance between computational efficiency and classification
performance. The network’s architecture was modified by
replacing the original fully connected layer, which outputs
logits for 1000 classes, with a new fully connected layer
that outputs logits for two classes: positive and negative.

Data Augmentation and Preprocessing: To enhance
the generalization capability of the secondary classifier, we
applied several data augmentation techniques during train-
ing. These included random rotations to simulate different
orientations, horizontal and vertical flips to account for re-
flections, scaling transformations to mimic size variations,
and color jitter adjustments to address changes in lighting
conditions. The augmented images were normalized using
the mean and standard deviation values from the ImageNet
dataset: a mean of [0.485, 0.456, 0.406] and a standard de-
viation of [0.229, 0.224, 0.225].

Training Procedure: The secondary classifier was
trained using the cross-entropy loss function, which mea-
sures the discrepancy between the predicted class probabil-
ities and the true labels. We used the Adam optimizer with
an initial learning rate of 1× 10−3 to update the model pa-
rameters. A cosine annealing scheduler was implemented to
adjust the learning rate during training, gradually reducing
it to prevent the optimizer from overshooting minima. The
training was conducted over 25 epochs with a batch size of
64. To monitor the model’s performance and prevent over-
fitting, we allocated 10% of the training data for validation
purposes. We also applied regularization techniques such as
dropout, with a rate of 0.5 before the final fully connected
layer, and weight decay of 1× 10−4.

3



3.4. Integration of the Secondary Classifier into the
Detection Pipeline

After training, we integrated the secondary classifier into
the YOLO v5m detection pipeline as a post-processing
module. The enhanced pipeline operates in several stages
to ensure that only validated detections are retained.

An input image is first processed by the YOLOv5m
model, which outputs a set of detections denoted as
{(bi, ci, si)}Ni=1, where bi represents the bounding box co-
ordinates, ci the class label, and si the confidence score
for the i-th detection. For each detection, the correspond-
ing RoI is extracted from the original image using bi. The
RoI is resized to 224 × 224 pixels and passed through the
secondary classifier, which outputs a probability distribu-
tion over the two classes: positive (ppositive) and negative
(pnegative). Detections where pnegative > 0.5 are considered
false positives and are discarded. The remaining detections,
where ppositive > 0.5, are retained and constitute the refined
set of detections. The refined detections {(bi, ci, si)} are
presented as the final output of the pipeline. This process
effectively reduces false positives and enhances the overall
precision of the object detection system.

3.5. Occluded Bounding Box Enhancements

Object detection models often struggle to accurately lo-
calize objects in cases of occlusion (when objects overlap
or partially block each other). To address this, we im-
plemented a post-processing method that adjusts predicted
bounding boxes based on Intersection over Union (IoU) and
proximity gaps. This approach enhances bounding box ac-
curacy without retraining the model. We are enhancing ob-
ject detection predictions by refining the bounding boxes
to better account for occlusion scenarios. This process in-
volves analyzing existing predictions (bounding boxes) and
making adjustments based on their overlap and proximity to
other objects in the image.

The success of this enhancement is closely tied to the
prediction accuracy of the initial detection models. The goal
of this enhancement is to generate more accurate bounding
boxes and provide augmented data that can be used to re-
train detection models for improved performance. This pro-
cess aims to improve the model’s ability to understand and
handle occlusion scenarios more effectively. We observed
that object detection—specifically for vehicles—tends to
fail when the objects are partially occluded. This high-
lights the critical need for better predictions to ensure accu-
rate localization and identification of occluded objects. By
addressing these challenges, this enhancement provides a
foundation for models to perform more robustly in complex
environments.

Methodology: The process begins with the predicted
images and their corresponding bounding box labels.

YOLOv5m returns the bounding boxes in xywh format,
that is, {classid, xcenter, ycenter, width, height, confidence
score}. To align it properly with our predictions, we convert
them to Pixel format:

Pixel Format: (c, x1, y1, x2, y2)

x1 = (xcenter −
w

2
)× image width

y1 = (ycenter −
h

2
)× image height

x2 = (xcenter +
w

2
)× image width

y2 = (ycenter +
h

2
)× image height

The process begins with the model’s predictions, where
bounding boxes with low confidence scores (< 0.25) are
flagged as potential candidates for occlusion. A lower con-
fidence score is typically indicative of uncertainty in detec-
tion, often caused by partial visibility of objects. Next, the
IoU between each bounding box and other bounding boxes
in the same image is calculated. IoU measures the overlap
between two boxes, and a threshold is applied to identify
overlapping or occluded objects. If the IoU exceeds this
threshold, the bounding boxes are flagged for enhancement.
This ensures that even minor overlaps are accounted for, as
they could indicate occlusion.

The flagged bounding boxes are dynamically expanded
based on their IoU, relative height, and width. The adjust-
ments are made proportionally, ensuring that expansions
align with the direction of overlap or proximity. For ex-
ample, if the IoU indicates occlusion from the right side,
the box expands to the right. Similarly, vertical adjustments
are applied if the occlusion occurs above or below the ob-
ject. The degree of expansion is determined by a function
of IoU and the bounding box’s relative dimensions. Larger
overlaps result in more significant adjustments, while small
overlaps result in minimal expansion. This ensures that the
process is adaptive and context-aware. All expansions are
constrained within the image boundaries to maintain realis-
tic adjustments.

By combining confidence scores, IoU, and dynamic
dimension scaling, this method systematically enhances
bounding boxes to better account for occlusions. The re-
fined bounding boxes can then be used to retrain the model,
enabling it to learn and handle occlusion scenarios more
effectively. To enhance bounding box refinement dynam-
ically, a regression model can be trained to predict adjust-
ments (dx1, dy1, dx2, dy2) based on input features such as
IoU, confidence scores, bounding box dimensions, and class
labels. This model learns patterns from training data where
adjustments are annotated or simulated, enabling it to gen-
eralize to diverse occlusion scenarios.

4



3.6. Implementation Details

The models were implemented using the PyTorch deep
learning framework. All experiments were conducted on
Google Colab Pro with an NVIDIA L4 GPU with 53 GB
of RAM. We used the variant of YOLOv5 (YOLOv5m)
for its balance between speed and accuracy. We fine-
tuned the model on our vehicles COCO dataset [8] for 10
epochs. The ResNet-18 model was initialized with weights
pre-trained on ImageNet. Initially, only the final layer
was retrained to adapt to our two-class problem. Subse-
quently, we fine-tuned the entire network to improve per-
formance. We conducted hyperparameter tuning to deter-
mine the optimal learning rate and batch size, with the
best results achieved using a learning rate of 1 × 10−3

and a batch size of 64. We also applied regularization
techniques, including dropout and weight decay to pre-
vent overfitting. The code with the trained models and
datasets are publicly available in https://github.com/amit-
sarker/vehicle-detection-with-occlusion.

3.7. Evaluation Metrics

To assess the performance of the enhanced detection
pipeline, we employed the COCO evaluation metrics, which
provide a comprehensive analysis of object detection mod-
els. We calculated the Average Precision (AP) at IoU
thresholds ranging from 0.5 to 0.95 in increments of 0.05.
This metric evaluates the precision of the model across dif-
ferent levels of localization accuracy. The Average Re-
call (AR) was evaluated across various object sizes—small,
medium, and large—to determine the model’s ability to de-
tect objects of different scales.

4. Results

Dataset: We conducted the evaluation of our proposed
two-stage detection pipeline using a dataset [8] compris-
ing 18998 images annotated for object detection tasks. The
dataset is divided into three subsets: a training set with
13300 images (70% of the total dataset), a validation set
containing 3798 images (20%), and a test set of 1900 im-
ages (10%). The images in the dataset featured diverse
scenes and conditions, encompassing urban and rural envi-
ronments, different weather conditions, and varying times
of day. The object categories in the annotations are Bus,
Car, Motorcycle, and Truck, with bounding boxes mark-
ing the locations of these vehicles in each image.

4.1. Quantitative analysis

Baselines: To evaluate the effectiveness of our proposed
detection pipeline (YOLOv5m + ResNet), we compared
its performance against several baseline models from the
YOLOv5 family: YOLOv5n, YOLOv5s, YOLOv5m,

Figure 2. Performance evaluation of YOLOv5m + ResNet with
other YOLOv5 variants across all classes.

YOLOv5l, and YOLOv5x. These models represent dif-
ferent scales within the YOLOv5 architecture and vary
in network depth and width to balance between computa-
tional efficiency and detection precision. YOLOv5n (nano)
and YOLOv5s (small) are lightweight models designed for
speed, while YOLOv5l (large) and YOLOv5x (extra-large)
offer higher accuracy at the cost of increased computational
resources. YOLOv5m (medium) serves as a middle ground
between these extremes.

We selected these baselines to provide a comprehen-
sive evaluation across a spectrum of model complexities.
By comparing our proposed model (YOLOv5m + ResNet),
against these baselines, we aimed to demonstrate the effi-
cacy of our approach in improving detection performance
without incurring significant computational overhead. We
chose YOLOv5m as the base for our model because it of-
fers a balance of speed and accuracy suitable for real-time
applications. That makes it an ideal candidate for enhance-
ment through our secondary classification stage. For a fair
comparison, we trained all the baselines for 10 epochs using
our vehicle coco dataset.

4.1.1 Performance Analysis (All Classes)

We assessed the performance of each model using standard
object detection metrics, focusing on the collective results
across all classes: Bus, Car, Motorcycle, and Truck. The
metrics include Average Precision (AP) at IoU thresholds,
specifically AP@IoU=0.5, as well as AP for small, medium,
and large objects. Additionally, we evaluated Average Re-
call (AR) under various conditions to gauge the models’
abilities to detect objects of different sizes and at different
IoU thresholds. The evaluation results are shown in Figure
2 and metric scores can be found in Table 1.

From the results, we observe that our proposed model
(YOLOv5m + ResNet), achieved an AP@IoU=0.5 of 0.637,
surpassing the baseline YOLOv5m model’s AP of 0.511 by

5

https://github.com/amit-sarker/vehicle-detection-with-occlusion
https://github.com/amit-sarker/vehicle-detection-with-occlusion


Table 1. Performance metrics for different YOLOv5 models and the proposed YOLOv5m + ResNet model.

Metric YOLOv5n YOLOv5s YOLOv5m YOLOv5l YOLOv5x YOLOv5m + ResNet
AP@IoU=0.5 0.342 0.504 0.511 0.613 0.672 0.637
AP small 0.092 0.212 0.236 0.304 0.370 0.341
AP medium 0.322 0.506 0.477 0.600 0.675 0.611
AP large 0.451 0.617 0.645 0.754 0.816 0.777
AR@IoU=0.5 0.234 0.315 0.308 0.369 0.386 0.384
AR@IoU=0.75 0.376 0.555 0.548 0.659 0.702 0.676
AR@[0.5:0.95] 0.381 0.565 0.557 0.667 0.712 0.681
AR small 0.117 0.304 0.282 0.374 0.450 0.425
AR medium 0.370 0.582 0.547 0.678 0.735 0.670
AR large 0.484 0.648 0.679 0.783 0.836 0.806

(a) Performance evaluation for Bus. (b) Performance evaluation for Truck.

(c) Performance evaluation for Motorcycle. (d) Performance evaluation for Car.

Figure 3. Comparison of YOLOv5m + ResNet with other YOLOv5 variants across all vehicle categories.

a significant margin. This improvement highlights the ef-
fectiveness of integrating the ResNet-18 secondary classi-
fier in enhancing detection accuracy. When examining ob-
ject sizes, our model demonstrated consistent performance
gains across all categories:

• AP small increased from 0.236 (YOLOv5m) to 0.341.
This indicates a substantial enhancement in detecting
small vehicles. Small objects are challenging due to their
limited pixel information.

• AP medium improved from 0.477 to 0.611. This show-
cases better precision in identifying medium-sized vehi-
cles.

• AP large increased from 0.645 to 0.777. This reflects the
model’s strengthened capability in accurately detecting
large vehicles.
The Average Recall metrics also showed notable im-

provements:
• AR@IoU=0.75 increased from 0.548 to 0.676. This sug-

6



gests that our model is more effective at higher IoU
thresholds, which require more precise localization.

• AR@[0.5:0.95] increased from 0.557 to 0.681. This
demonstrates enhanced recall over a range of IoU thresh-
olds.

• Improvements in AR small, AR medium, and AR large
further confirm the model’s better detection capabilities
across different object sizes.

Comparing our model to larger YOLOv5 variants
like YOLOv5l and YOLOv5x, we notice that YOLOv5x
achieved a higher AP@IoU=0.5 of 0.672. However, this
comes at the cost of increased computational resources and
longer inference times due to the model’s larger size. Our
proposed model offers a competitive AP@IoU=0.5 while
maintaining the efficiency associated with YOLO v5m.
This makes it more suitable for real-time applications where
resource constraints are a consideration.

4.1.2 Per-Class Performance Analysis

In addition to the overall performance, we conducted a de-
tailed analysis of the detection results for each object class:
Bus, Truck, Motorcycle, and Car. The performance met-
rics for these classes were evaluated using the same AP and
AR metrics as before, focusing on the impact of our pro-
posed model on individual object categories.

Bus: For the Bus category, our proposed model achieved
an AP@IoU0.5 of 0.807, a substantial improvement over
the baseline YOLOv5m’s AP of 0.649. This performance is
close to that of the larger YOLOv5x model, which achieved
an AP of 0.841. The AP for small buses increased from
0.268 (YOLOv5m) to 0.318 with our model. This indicates
enhanced detection of small-sized buses. For medium and
large buses, the AP improved from 0.512 and 0.770 to 0.722
and 0.906, respectively. The AR metrics showed similar
trends, with AR@IoU=0.75 increasing from 0.667 to 0.821,
demonstrating better localization accuracy. Figure 3a shows
the evaluation results for the Bus class.

Truck: In the case of Truck detection, our model
achieved an AP@IoU=0.5 of 0.503. This significantly out-
performs the baseline YOLOv5m’s AP of 0.282. This result
is comparable to the YOLOv5x model, which achieved an
AP of 0.511. The AP for small trucks increased from 0.030
(YOLOv5m) to 0.194 with our model. This indicates a sub-
stantial enhancement in detecting small trucks. For medium
and large trucks, the AP improved from 0.184 and 0.489
to 0.443 and 0.696, respectively. The AR@IoU=0.75 in-
creased from 0.303 to 0.576, reflecting improved precision
in truck localization. Figure 3b shows the evaluation results
for the Truck class.

Motorcycle: For the Motorcycle class, our proposed
model achieved an AP@IoU=0.5 of 0.616. This surpasses
the baseline YOLOv5m’s AP of 0.581. While this per-

formance is slightly lower than that of YOLOv5x (0.719),
our model demonstrated significant improvements in de-
tecting small motorcycles, with the AP small increasing
from 0.239 (YOLOv5m) to 0.351. The AP for medium mo-
torcycles improved from 0.450 to 0.514 and for large mo-
torcycles from 0.745 to 0.773. The AR metrics indicate en-
hanced recall across all object sizes, with AR@[0.5:0.95]
increasing from 0.635 to 0.649. Figure 3c shows the evalu-
ation results for the Motorcycle class.

Car: In the Car category, our model achieved
an AP@IoU=0.5 of 0.622, outperforming the baseline
YOLOv5m’s AP of 0.532 and marginally exceeding
YOLOv5x’s AP of 0.618. The AP small for cars increased
from 0.410 (YOLOv5m) to 0.503. This indicates a no-
table improvement in detecting small cars. For medium-
sized cars, the AP improved from 0.712 to 0.764, while
the AP for large cars increased from 0.576 to 0.735. The
AR@IoU=0.75 saw an increase from 0.606 to 0.666, re-
flecting better localization precision. Figure 3d shows the
evaluation results for the Car class.

4.2. Qualitative analysis

We, further, verify the quality of detections produced by
the model. As shown in Figure 5, our proposed module re-
adjusts the bounding boxes of objects that are partly missing
from the image, while the detections of unoccluded vehicles
remain consistent. This refinement indicates that the mod-
ule calculates the appropriate bounding box dimensions as
if the object in its front is missing. Also, it can be no-
ticed from sthe econd image in Figure 5 that the model
performs better than baselines even with multiple vehicles
stacked. However, the confidence scores and vehicle classes
are hardly improved with this module.

From Figure 4, we observe that the ResNet backbone
assists YOLOv5m in finding some of the missed detections,
and improves the confidence levels of the correct detections
while removing the incorrect predicted bounding boxes.

Though our proposed model performs well, it degrades
the performance of YOLOv5m to a small extent by its in-
ability to detect far-away objects. For instance, Figure 6
shows the first row, where the backbone misses some ob-
jects barely visible in the scene. It can not detect objects in
less illumination, as seen in the second row. When multi-
ple vehicles of similar colors are stacked one after the other
as shown in third row of 6, the model finds it challenging.
This could be attributed to the model’s performance being
heavily dependent on initial detections.

5. Conclusion
In this work, we presented a two-stage detection pipeline
that enhances vehicle detection accuracy by integrating a
ResNet-18 secondary classifier into the YOLOv5m frame-
work and implemented occlusion-aware bounding-box en-

7



(a) Detections by YOLOv5m

(b) Detections by YOLOv5m + ResNet

Figure 4. Comparisons of detections with and without the sec-
ondary classifier (ResNet).

hancements. We show that IoU with earlier predictions and
aspect ratio serve as important information for these en-
hancements. Our approach effectively reduces false pos-
itives and misclassification, and improves localization ac-
curacy in occluded scenarios without significant computa-
tional overhead. Experimental results demonstrate signif-
icant improvements in Average Precision (AP) and Aver-
age Recall (AR) across all vehicle categories, especially
for small and medium-sized objects. The proposed method
offers a practical solution for real-time applications in au-
tonomous driving and ADAS, contributing to safer and
more reliable object detection systems in complex environ-
ments. We conclude that while IoU and aspect ratio are
important, they are not sufficient for predicting object di-
mensions when occluded.

References
[1] Yolo: Algorithm for object detection explained, 2023. 2
[2] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High

(a) Detections by YOLOv5m + ResNet

(b) Detections by YOLOv5m + ResNet with Occlusion-Aware Module

Figure 5. Comparisons of detections with and without the
occlusion-aware module.

Figure 6. Error analysis of a few poor detections by models.

quality object detection and instance segmentation. IEEE

8



transactions on pattern analysis and machine intelligence,
43(5):1483–1498, 2019. 2

[3] Peng Chu, Jiang Wang, Quanzeng You, Haibin Ling, and
Zicheng Liu. Transmot: Spatial-temporal graph trans-
former for multiple object tracking. In Proceedings of the
IEEE/CVF Winter Conference on applications of computer
vision, pages 4870–4880, 2023. 2

[4] Ross Girshick. Fast r-cnn. arXiv preprint arXiv:1504.08083,
2015. 2

[5] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014. 2

[6] Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang
Zhang. Scale-aware trident networks for object detection. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 6054–6063, 2019. 2

[7] Liting Lin, Heng Fan, Zhipeng Zhang, Yong Xu, and Haibin
Ling. Swintrack: A simple and strong baseline for trans-
former tracking. Advances in Neural Information Processing
Systems, 35:16743–16754, 2022. 2

[8] Vehicle MSCOCO. Vehicles-coco dataset. https:
//universe.roboflow.com/vehicle-mscoco/
vehicles-coco, 2022. visited on 2024-10-31. 1, 2, 3, 5

[9] J Redmon. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016. 1, 2

[10] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. IEEE transactions on pattern analysis
and machine intelligence, 39(6):1137–1149, 2016. 2

[11] Yining Shi, Jingyan Shen, Yifan Sun, Yunlong Wang, Jiaxin
Li, Shiqi Sun, Kun Jiang, and Diange Yang. Srcn3d: Sparse
r-cnn 3d for compact convolutional multi-view 3d object
detection and tracking. arXiv preprint arXiv:2206.14451,
2022. 2

[12] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chen-
feng Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan
Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end ob-
ject detection with learnable proposals. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 14454–14463, 2021. 2

[13] Jian Wei, Jianhua He, Yi Zhou, Kai Chen, Zuoyin Tang, and
Zhiliang Xiong. Enhanced object detection with deep con-
volutional neural networks for advanced driving assistance.
IEEE transactions on intelligent transportation systems, 21
(4):1572–1583, 2019. 1

[14] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng,
and Wenyu Liu. Fairmot: On the fairness of detection and
re-identification in multiple object tracking. International
journal of computer vision, 129:3069–3087, 2021. 2

[15] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng
Weng, Zehuan Yuan, Ping Luo, Wenyu Liu, and Xinggang
Wang. Bytetrack: Multi-object tracking by associating every
detection box. In European conference on computer vision,
pages 1–21. Springer, 2022. 2

[16] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
jects as points. arXiv preprint arXiv:1904.07850, 2019. 2

9

 https://universe.roboflow.com/vehicle-mscoco/vehicles-coco 
 https://universe.roboflow.com/vehicle-mscoco/vehicles-coco 
 https://universe.roboflow.com/vehicle-mscoco/vehicles-coco 

	. Introduction
	. Related work
	. Method
	. Primary Detection Model
	. Dataset Preparation for Secondary Classifier
	. Secondary Classifier Design and Training
	. Integration of the Secondary Classifier into the Detection Pipeline
	. Occluded Bounding Box Enhancements
	. Implementation Details
	. Evaluation Metrics

	. Results
	. Quantitative analysis
	Performance Analysis (All Classes)
	Per-Class Performance Analysis

	. Qualitative analysis

	. Conclusion

